Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Chemie

1 Die Fachgruppe Chemie am Annette-von-Droste-Hülshoff-Gymnasium

Die Lehrerbesetzung der Schule (zur Zeit 3 Kollegen/-innen) ermöglicht einen ordnungsgemäßen Fachunterricht in der Sekundarstufe I und Wahlpflichtkurse mit naturwissenschaftlichem Schwerpunkt (Bi/Ch). In der Sekundarstufe I wird in den Jahrgangsstufen 7,8, und 9 Chemie im Umfang der vorgesehenen 6 Wochenstunden laut Stundentafel erteilt.

In der Oberstufe sind durchschnittlich ca. 90-100 Schülerinnen und Schüler pro Stufe. Das Fach Chemie ist in der Regel in der Einführungsphase mit 1-2 Grundkursen, in der Qualifikationsphase je Jahrgangsstufe mit einem Grundkurs vertreten. Die Teilnahme an einem Leistungskurs ist in Kooperation mit der Nachbarschule möglich.

In der Oberstufe gibt es im Grundkurs 1 Doppel- und 1 Einzelstunde, im Leistungskurs 2 Doppelstunden und 1 Einzelstunde wöchentlich.

Dem Fach Chemie stehen 2 Fachräume zur Verfügung, in denen ausgezeichnet in Schülerübungen experimentell gearbeitet werden kann. Die Ausstattung der Chemiesammlung mit Geräten und Materialien für Demonstrations- und für Schülerexperimente ist gut, die vom Schulträger darüber hinaus bereitgestellten Mittel reichen für das Erforderliche aus.

Schülerinnen und Schüler der Schule nehmen am Wettbewerb "Chemie entdecken", "Jugend forscht/Schüler experimentieren" und der Chemieolympiade zum Teil mit großem Erfolg teil.

Die Fachgruppe fördert besonders das Experimentieren in allen Jahrgangsstufen.

2 Entscheidungen zum Unterricht

2.1 Unterrichtsvorhaben

Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, <u>sämtliche</u> im Kernlehrplan angeführten Kompetenzen abzudecken. Dies entspricht der Verpflichtung jeder Lehrkraft, <u>alle</u> Kompetenzerwartungen des Kernlehrplans bei den Lernenden auszubilden und zu entwickeln.

Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichts- und der Konkretisierungsebene.

Im "Übersichtsraster Unterrichtsvorhaben" (Kapitel 2.1.1) wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten Kompetenzen, Inhaltsfeldern und inhaltlichen Schwerpunkten zu verschaffen. Um Klarheit für die Lehrkräfte herzustellen und die Übersichtlichkeit zu gewährleisten, werden in der Kategorie "Kompetenzen" an dieser Stelle nur die übergeordneten Kompetenzerwartungen ausgewiesen, während die konkretisierten Kompetenzerwartungen erst auf der Ebene konkretisierter Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Um Spielraum für Vertiefungen, besondere Schülerinteressen, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Kursfahrten o.ä.) zu erhalten, wurden im Rahmen dieses schulinternen Lehrplans nur ca. 75 Prozent der Bruttounterrichtszeit verplant. (Als 75 % wurden für die Einführungsphase 90 Unterrichtsstunden, für den Grundkurs in der Q1 ebenfalls 90 und in der Q2 60 Stunden und für den Leistungskurs in der Q1 150 und für Q2 90 Unterrichtsstunden zugrunde gelegt.)

Während der Fachkonferenzbeschluss zum "Übersichtsraster Unterrichtsvorhaben" zur Gewährleistung vergleichbarer Standards sowie zur Absicherung von Lerngruppenübertritten und Lehrkraftwechseln für alle Mitglieder der Fachkonferenz Bindekraft entfalten soll, besitzt die exemplarische Ausweisung "konkretisierter Unterrichtsvorhaben" (Kapitel 2.1.2) empfehlenden Charakter. Referendarinnen und Referendaren sowie neuen Kolleginnen und Kollegen dienen diese vor allem zur standardbezogenen Orientierung in der neuen Schule, aber auch zur Verdeutlichung von unterrichtsbezogenen fachgruppeninternen Absprachen zu didaktisch-methodischen Zugängen, fächerübergreifenden Kooperationen, Lernmitteln und -orten sowie vorgesehenen Leistungsüberprüfungen, die im Einzelnen auch den Kapiteln 2.2 bis 2.4 zu entnehmen sind. Abweichungen von den vorgeschlagenen Vorgehensweisen bezüglich der konkretisierten Unterrichtsvorhaben sind im Rahmen der pädagogischen Freiheit der Lehrkräfte jederzeit möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzen des Kernlehrplans Berücksichtigung finden.

Anmerkung zur Einführungsphase:

In Anknüpfung an die Thematik der Sek.I wird in der Einführungsphase mit dem Unterrichtsvorhaben 4 (Vom Alkohol zum Aromastoff) begonnen. Es folgen die Unterrichtsvorhaben 1,2 und 3 in der angegebenen Reihenfolge. (vgl. Übersichtsraster auf der folgenden Seite)

2.1.1 Übersichtsraster Unterrichtsvorhaben

Einführungsphase			
<u>Unterrichtsvorhaben I:</u>	Unterrichtsvorhaben II:		
Kontext: Nicht nur Graphit und Diamant – Erscheinungsformen des Kohlenstoffs	Kontext: Kohlenstoffdioxid und das Klima – Die Bedeutung der Ozeane Schwerpunkte übergeordneter Kompetenzerwartungen:		
Schwerpunkte übergeordneter Kompetenzerwartungen: UF4 Vernetzung E6 Modelle E7 Arbeits- und Denkweisen K3 Präsentation	 E1 Probleme und Fragestellungen E4 Untersuchungen und Experimente K4 Argumentation B3 Werte und Normen B4 Möglichkeiten und Grenzen 		
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen	Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen		
Inhaltlicher Schwerpunkt: • Nanochemie des Kohlenstoffs	 Inhaltliche Schwerpunkte: (Organische und) anorganische Kohlenstoffverbindungen Gleichgewichtsreaktionen Stoffkreislauf in der Natur 		
Zeitbedarf: ca. 8 Std. à 45min	Zeitbedarf: ca. 22 Std. à 45 min		
<u>Unterrichtsvorhaben III:</u>	<u>Unterrichtsvorhaben IV:</u>		
Kontext: Methoden der Kalkentfernung im Haushalt	Kontext: Vom Alkohol zum Aromastoff		
Schwerpunkte übergeordneter Kompetenzerwartungen: UF1 Wiedergabe UF3 Systematisierung E3 Hypothesen E5 Auswertung K1 Dokumentation Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen	Schwerpunkte übergeordneter Kompetenzerwartungen: UF2 Auswahl UF3 Systematisierung E2 Wahrnehmung und Messung E4 Untersuchungen und Experimente K2 Recherche K3 Präsentation B1 Kriterien		
Inhaltlishar Cahurarnunkt	B2 Entscheidungen Inhaltsfald: Kahlanataff varhindungen und Claich gewishtereaktionen.		
Inhaltlicher Schwerpunkt: • Gleichgewichtsreaktionen Zeitbedarf: ca. 18 Std. à 45 min	 Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen Inhaltlicher Schwerpunkt: Organische (und anorganische) Kohlenstoffverbindungen 		
	Zeitbedarf: ca. 38 Std. à 45 min		
Summe Einführungsphase: 86 Stunden			

Qualifikationsphase (Q1) – GRUNDKURS			
<u>Unterrichtsvorhaben I:</u>	<u>Unterrichtsvorhaben II:</u>		
Kontext: Säuren und Basen in Alltagsprodukten:	Kontext: Säuren und Basen in Alltagsprodukten: Starke und schwache		
Konzentrationsbestimmungen von Essigsäure in Lebensmitteln	Säuren und Basen		
Schwerpunkte übergeordneter Kompetenzerwartungen:	Schwerpunkte übergeordneter Kompetenzerwartungen:		
UF1 Wiedergabe	UF2 Auswahl		
E2 Wahrnehmung und Messung	UF3 Systematisierung		
E4 Untersuchungen und Experimente	E1 Probleme und Fragestellungen		
E5 Auswertung	B1 Kriterien		
K1 Dokumentation			
K2 Recherche	Inhaltsfeld: Säuren, Basen und analytische Verfahren		
	Inhaltliche Schwerpunkte:		
Inhaltsfeld: Säuren, Basen und analytische Verfahren	Eigenschaften und Struktur von Säuren und Basen		
	Konzentrationsbestimmungen von Säuren und Basen		
Inhaltliche Schwerpunkte:	- Ronzentrationsbestimmangen von Gaaren and Basen		
Eigenschaften und Struktur von Säuren und Basen	Zeitbedarf: 8 Std. à 45 Minuten		
 Konzentrationsbestimmungen von Säuren und Basen 			
Zeitbedarf: ca. 22 Std. à 45 Minuten			
<u>Unterrichtvorhaben III</u>	<u>Unterrichtsvorhaben IV:</u>		
Kontext: Strom für Taschenlampe und Mobiltelefon	Kontext: Von der Wasserelektrolyse zur Brennstoffzelle		
Schwerpunkte übergeordneter Kompetenzerwartungen:	Schwerpunkte übergeordneter Kompetenzerwartungen:		
UF3 Systematisierung	UF2 Auswahl		
UF4 Vernetzung	E6 Modelle		
E2 Wahrnehmung und Messung	E7 Vernetzung		
E4 Untersuchungen und Experimente	K1 Dokumentation		
E6 Modelle	K4 Argumentation		
K2 Recherche	B1 Kriterien		
B2 Entscheidungen	B3 Werte und Normen		
Inhaltsfeld: Elektrochemie	Inhaltsfeld: Elektrochemie		
Inhaltlicher Schwerpunkt:	Inhaltliche Schwerpunkte:		

Mobile Energiequellen	Mobile Energiequellen	
7-Market and CO. Olympian > 45 Minutes	Elektrochemische Gewinnung von Stoffen	
Zeitbedarf: ca. 22 Stunden à 45 Minuten	Zeitbedarf: ca. 14 Stunden à 45 Minuten	
	Zortodari. Sa. 11 Staridori a 18 Minatori	
<u>Unterrichtsvorhaben V:</u>	<u>Unterrichtsvorhaben VI:</u>	
Kontext: Korrosion vernichtet Werte	Kontovti Vom fossilan Bahataff zum Anwandungenradukt	
	Kontext: Vom fossilen Rohstoff zum Anwendungsprodukt	
Schwerpunkte übergeordneter Kompetenzerwartungen:	Schwerpunkte übergeordneter Kompetenzerwartungen:	
UF1 Wiedergabe	UF3 Systematisierung	
 UF3 Systematisierung E6 Modelle 	UF4 Vernetzung	
B2 Entscheidungen	E3 Hypothesen	
bz Entscheidungen	E 4 Untersuchungen und Experimente KO Britagnatation	
Inhaltsfeld: Elektrochemie	 K3 Präsentation B3 Werte und Normen 	
	• B3 Weite und Normen	
Inhaltlicher Schwerpunkt:	Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe	
◆ Korrosion		
	Inhaltlicher Schwerpunkt:	
Zeitbedarf: ca. 6 Stunden à 45 Minuten	Organische Verbindungen und Reaktionswege	
	Zeitbedarf: ca. 14 Stunden à 45 Minuten	
	(O.1) ODUNDICUDO 00.00	
Summe Qualifikationsphase (Q1) – GRUNDKURS: 86 Stunden		

Qualifikationsphase (Q2) – GRUNDKURS		
<u>Unterrichtsvorhaben I:</u>	<u>Unterrichtsvorhaben II</u> :	
Kontext: Wenn das Erdöl zu Ende geht	Kontext: Maßgeschneiderte Produkte aus Kunststoffen	
Schwerpunkte übergeordneter Kompetenzerwartungen: UF4 Vernetzung E1 Probleme und Fragestellungen E4 Untersuchungen und Experimente K3 Präsentation B3 Werte und Normen B4 Möglichkeiten und Grenzen Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe	Schwerpunkte übergeordneter Kompetenzerwartungen: UF2 Auswahl UF4 Vernetzung E3 Hypothesen E4 Untersuchungen und Experimente E5 Auswertung K3 Präsentation B3 Werte und Normen Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe	
Inhaltlicher Schwerpunkt: ◆ Organische Verbindungen und Reaktionswege	 Inhaltlicher Schwerpunkt: Organische Verbindungen und Reaktionswege Organische Werkstoffe 	
Zeitbedarf: ca. 10 Stunden à 45 Minuten	Zeitbedarf: ca. 24 Stunden à 45 Minuten	
<u>Unterrichtsvorhaben III:</u>		
Kontext: Bunte Kleidung		
Schwerpunkte übergeordneter Kompetenzerwartungen: UF1 Wiedergabe UF3 Systematisierung E6 Modelle E7 Arbeits- und Denkweisen K3 Präsentation B4 Möglichkeiten und Grenzen Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe Inhaltlicher Schwerpunkt: Farbstoffe und Farbigkeit		
Zeitbedarf: ca. 20 Stunden à 45 Minuten		
Summe Qualifikationsphase (Q2) – GRUNDKURS: 54 Stunden		

Qualifikationsphase (Q1) – LEISTUNGSKURS		
<u>Unterrichtsvorhaben I:</u>	<u>Unterrichtsvorhaben II:</u>	
Kontext: Säuren und Basen in Alltagsprodukten	Kontext: Strom für Taschenlampe und Mobiltelefon	
Schwerpunkte übergeordneter Kompetenzerwartungen: UF1 Wiedergabe UF3 Systematisierung E3 Hypothesen E4 Untersuchungen und Experimente E5 Auswertung K1 Dokumentation B2 Entscheidungen Inhaltsfelder: Säuren, Basen und analytische Verfahren Inhaltliche Schwerpunkte: Eigenschaften und Struktur von Säuren und Basen Konzentrationsbestimmungen von Säuren und Basen Titrationsmethoden im Vergleich Zeitbedarf: ca. 36 Std. à 45 Minuten	Schwerpunkte übergeordneter Kompetenzerwartungen: UF1 Wiedergabe UF3 Systematisierung E1 Probleme und Fragestellungen E2 Wahrnehmung und Messung E4 Untersuchungen und Experimente K2 Recherche B1 Kriterien Inhaltsfelder: Elektrochemie Inhaltlicher Schwerpunkt: Mobile Energiequellen Zeitbedarf: ca. 30 Stunden à 45 Minuten	
Unterrichtsvorhaben III:	Unterrichtsvorhaben IV:	
Kontext: Elektroautos–Fortbewegung mithilfe elektrochemischer Prozesse	Kontext: Entstehung von Korrosion und Schutzmaßnahmen	
Schwerpunkte übergeordneter Kompetenzerwartungen: UF2 Auswahl UF4 Vernetzung E1 Probleme und Fragestellungen E5 Auswertung K2 Recherche K4 Argumentation B1 Kriterien B4 Möglichkeiten und Grenzen Inhaltsfelder: Elektrochemie Inhaltliche Schwerpunkte:	Schwerpunkte übergeordneter Kompetenzerwartungen: UF3 Systematisierung E6 Modelle K2 Recherche B2 Entscheidungen Inhaltsfelder: Elektrochemie Inhaltlicher Schwerpunkt: Korrosion und Korrosionsschutz Zeitbedarf: ca. 10 Std. à 45 Minuten	

◆ Elektrochemische Gewinnung von Stoffen	
Quantitative Aspekte elektrochemischer Prozesse	
Zeitbedarf: ca. 22 Stunden à 45 Minuten	
<u>Unterrichtsvorhaben V:</u>	
Kontext: Biodiesel als Alternative zu Diesel aus Mineralöl	
Schwerpunkte übergeordneter Kompetenzerwartungen:	
UF4 Vernetzung	
E4 Untersuchungen und Experimente	
K2 Recherche	
K3 Präsentation	
B2 EntscheidungenB3 Werte und Normen	
B3 Werte und Normen	
Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe	
Inhaltliche Schwerpunkte:	
Organische Verbindungen und Reaktionswege	
◆ Reaktionsabläufe	
Zeitbedarf: ca. 28 Stunden à 45 Minuten	
Summe Qualifikationsphase (Q1)	- LEISTUNGSKURS: 126 Stunden

Qualifikationsphase (Q2) - LEISTUNGSKURS Unterrichtsvorhaben I: Unterrichtsvorhaben II: Kontext: Maßgeschneiderte Kunststoffe - nicht nur für Autos Kontext: Benzol als unverzichtbarer Ausgangsstoff bei Synthesen Schwerpunkte übergeordneter Kompetenzerwartungen: Schwerpunkte übergeordneter Kompetenzerwartungen: UF1 Wiedergabe UF2 Auswahl UF3 Systematisierung E3 Hypothesen E4 Untersuchungen und Experimente E6 Modelle E5 Auswertung E7 Arbeits- und Denkweisen E7 Arbeits- und Denkweisen B4 Möglichkeiten und Grenzen K3 Präsentation Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe B3 Werte und Normen Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe Inhaltliche Schwerpunkte: • Organische Verbindungen und Reaktionswege Inhaltliche Schwerpunkte: Reaktionsabläufe Organische Verbindungen und Reaktionswege • Reaktionsabläufe Zeitbedarf: ca. 20 Stunden à 45 Minuten Organische Werkstoffe Zeitbedarf: ca. 34 Stunden à 45 Minuten Unterrichtsvorhaben IV: Unterrichtsvorhaben III: Kontext: Farbstoffe im Alltag Kontext: Nitratbestimmung im Trinkwasser Schwerpunkte übergeordneter Kompetenzerwartungen: Schwerpunkte übergeordneter Kompetenzerwartungen: • UF1 Wiedergabe E2 Wahrnehmung und Messung UF3 Systematisierung E5 Auswertung E6 Modelle K1 Dokumentation K3 Präsentation K3 Präsentation K4 Argumentation **B1** Kriterien • B4 Möglichkeiten und Grenzen B2 Entscheidungen Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe Inhaltlicher Schwerpunkt: Inhaltlicher Schwerpunkt: • Farbstoffe und Farbigkeit Konzentrationsbestimmung durch Lichtabsorption

Summe Qualifikationsphase (Q2) - LEISTUNGSKURS: 84 Stunden

Zeitbedarf: ca. 10 Stunden à 45 Minuten

Zeitbedarf: ca. 20 Stunden à 45 Minuten

2.1.2 Konkretisierte Unterrichtsvorhaben Einführungsphase

Einführungsphase – Unterrichtsvorhaben I

Kontext: Nicht nur Graphit und Diamant – Erscheinungsformen des Kohlenstoffs

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft

Schwerpunkte übergeordneter Kompetenzerwartungen:

Kompetenzbereich Umgang mit Fachwissen:

• bestehendes Wissen aufgrund neuer chemischer Erfahrungen und Erkenntnisse modifizieren und reorganisieren (UF4).

Kompetenzbereich Erkenntnisgewinnung:

- Modelle begründet auswählen und zur Beschreibung, Erklärung und Vorhersage chemischer Vorgänge verwenden, auch in einfacher formalisierter oder mathematischer Form (E6).
- an ausgewählten Beispielen die Bedeutung, aber auch die Vorläufigkeit naturwissenschaftlicher Regeln, Gesetze und Theorien beschreiben (E7).

Kompetenzbereich Kommunikation:

 chemische Sachverhalte, Arbeitsergebnisse und Erkenntnisse adressatengerecht sowie formal, sprachlich und fachlich korrekt in Kurzvorträgen oder kurzen Fachtexten darstellen (K3).

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltlicher Schwerpunkt:

♦ Nanochemie des Kohlenstoffs

Zeitbedarf: ca. 8 Std. à 45 Minuten

Einführungsphase – Unterrichtsvorhaben I

Kontext: Nicht nur Graphit und Diamant – Erscheinungsformen des Kohlenstoffs				
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen				
		E6 ModelleE7 Arbeits- und Denkweisen		
Zeitbedarf: 8 Std. à 45 Mi	nuten	Basiskonzept (Schwerpunkt): Basiskonzept Struktur – Eigenschaft		
Sequenzierung inhalt- licher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktischmethodische Anmerkungen	
Graphit, Diamant und mehr - Modifikation - Elektronenpaar-bindung - Strukturformeln	nutzen bekannte Atom- und Bindungsmodelle zur Beschreibung organischer Moleküle und Kohlenstoffmodifikationen (E6). stellen anhand von Strukturformeln Vermutungen zu Eigenschaften ausgewählter Stoffe auf und schlagen geeignete Experimente zur Überprüfung vor (E3).	Test zur Selbsteinschätzung Atombau, Bindungslehre, Kohlenstoffatom, Periodensystem	Der Einstieg dient zur Angleichung der Kenntnisse zur Bin- dungslehre, ein AvD-Bogen wird erstellt	
	erläutern Grenzen der ihnen bekannten Bindungsmodelle (E7). beschreiben die Strukturen von Diamant und Graphit und vergleichen diese mit neuen Materialien aus Kohlenstoff (u.a. Fullerene) (UF4).	2. Gruppenpuzzle zu den Modifikationen des Kohlenstoffs "Graphit, Diamant und Fullerene"	Beim Graphit und beim Fulleren wer- den die Grenzen der einfachen Bin- dungsmodelle deut- lich. (Achtung: ohne Hybridisierung)	

Nanomaterialien

- Nanotechnologie
- Neue Materialien
- Anwendungen
- Risiken

recherchieren angeleitet und unter vorgegebenen Fragestellungen Eigenschaften und Verwendungen ausgewählter Stoffe und präsentieren die Rechercheergebnisse adressatengerecht (K2, K3).

stellen neue Materialien aus Kohlenstoff vor und beschreiben deren Eigenschaften (K3).

bewerten an einem Beispiel Chancen und Risiken der Nanotechnologie (B4). 1. Recherche zu neuen Materialien aus Kohlenstoff und Problemen der Nanotechnologie (z.B. Kohlenstoff-Nanotubes in Verbundmaterialien zur Verbesserung der elektrischen Leitfähigkeit in Kunststoffen)

- Aufbau
- Herstellung
- Verwendung
- Risiken
- Besonderheiten

Unter vorgegebenen Rechercheaufträgen können die Schülerinnen und Schüler selbstständig Fragestellungen entwickeln. (Niveaudifferenzierung, individuelle Förderung)

Die Schülerinnen und Schüler präsentieren ihre Ergebnisse in geeigneter Form

2. Präsentation

Die Präsentation ist nicht auf Materialien aus Kohlenstoff beschränkt.

Diagnose von Schülerkompetenzen:

Selbstevaluationsbogen zur Bindungslehre

Leistungsbewertung:

• Präsentation zu Nanomaterialien in Gruppen

Beispielhafte Hinweise zu weiterführenden Informationen:

Eine Gruppenarbeit zu Diamant, Graphit und Fullerene findet man auf den Internetseiten der Eidgenössischen Technischen Hochschule Zürich: http://www.educ.ethz.ch/unt/um/che/ab/graphit_diamant,

Zum Thema Nanotechnologie sind zahlreiche Materialien und Informationen veröffentlicht worden, z.B.:

FCI, Informationsserie Wunderwelt der Nanomaterialien (inkl. DVD und Experimente)

Klaus Müllen, Graphen aus dem Chemielabor, in: Spektrum der Wissenschaft 8/12

Sebastian Witte, Die magische Substanz, GEO kompakt Nr. 31

http://www.nanopartikel.info/cms

http://www.wissenschaft-online.de/artikel/855091

http://www.wissenschaft-schulen.de/alias/material/nanotechnologie/1191771

Einführungsphase - Unterrichtsvorhaben II

Kontext: Kohlenstoffdioxid und das Klima – Die Bedeutung der Ozeane

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Erkenntnisgewinnung:

- in vorgegebenen Situationen chemische Probleme beschreiben, in Teilprobleme zerlegen und dazu Fragestellungen angeben (E1).
- unter Beachtung von Sicherheitsvorschriften einfache Experimente zielgerichtet planen und durchführen und dabei mögliche Fehler betrachten (E4).

Kompetenzbereich Kommunikation:

• chemische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren (K4).

Kompetenzbereich Bewertung:

- in bekannten Zusammenhängen ethische Konflikte bei Auseinandersetzungen mit chemischen Fragestellungen darstellen sowie mögliche Konfliktlösungen aufzeigen (B3).
- Möglichkeiten und Grenzen chemischer und anwendungsbezogener Problemlösungen und Sichtweisen mit Bezug auf die Zielsetzungen der Naturwissenschaften darstellen (B4).

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltliche Schwerpunkte:

- ♦ (Organische und) anorganische Kohlenstoffverbindungen
- ♦ Gleichgewichtsreaktionen
- Stoffkreislauf in der Natur

Zeitbedarf: ca. 22 Std. à 45 Minuten

Einführungsphase - Unterrichtsvorhaben II

Kontext: Kohlenstoffdioxid und das Klima – Die Bedeutung für die Ozeane			
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen			
Inhaltliche Schwerpunkte: • Stoffkreislauf in der Natur • Gleichgewichtsreaktionen • K4 Argumentation • B3 Werte und Normen		rtungen:	
Zeitbedarf: 22 Std. à 45 Minuten		B4 Möglichkeiten und Grenzen Basiskonzepte (Schwerpunkt): Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht	
Sequenzierung inhalt- licher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Ab- sprachen Didaktisch- methodische An- merkungen
Kohlenstoffdioxid	unterscheiden zwischen dem natürlichen und dem anthropogen erzeugten Treibhauseffekt und beschreiben ausgewählte Ursachen und ihre Folgen (E1).	 Kartenabfrage Begriffe zum Thema Kohlenstoff-dioxid Information Eigenschaften / Treibhauseffekt z.B. Zeitungsartikel Berechnungen zur Bildung von CO₂ aus Kohle und Treibstoffen (Alkane) Aufstellen von Reaktionsgleichungen Berechnung des gebildeten CO₂ Vergleich mit rechtlichen Vorgaben weltweite CO₂-Emissionen Information Aufnahme von CO₂ u.a. durch die Ozeane 	Der Einstieg dient zur Anknüpfung an die Vorkenntnisse aus der SI und anderen Fächern Implizite Wiederho- lung: Stoffmenge n, Masse m und molare Masse M

Löslichkeit von CO2 in Wasser - qualitativ - Bildung einer sauren Lösung - quantitativ - Unvollständigkeit der Reaktion - Umkehrbarkeit	führen qualitative Versuche unter vorgegebener Fragestellung durch und protokollieren die Beobachtungen (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen) (E2, E4). dokumentieren Experimente in angemessener Fachsprache (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen, zur Einstellung einer Gleichgewichtsreaktion, zu Stoffen und Reaktionen eines natürlichen Kreislaufes) (K1). nutzen angeleitet und selbstständig chemiespezifische Tabellen und Nachschlagewerke zur Planung und Auswertung von Experimenten und zur Ermittlung von	Schülerexperiment: Löslichkeit von CO ₂ in Wasser (qualitativ) Aufstellen von Reaktionsgleichungen Lehrervortrag: Löslichkeit von CO ₂ (quantitativ): - Löslichkeit von CO ₂ in g/l - Berechnung der zu erwartenden Oxoniumionen -Konzentration - Nutzung einer Tabelle zum erwarteten pH-Wert - Vergleich mit dem tatsächlichen pH-Wert Ergebnis: Unvollständigkeit der ablaufenden Reaktion Lehrer-Experiment: Löslichkeit von CO ₂ bei Zu-	Wiederholung der Stoffmengenkonzentration c Wiederholung: Kriterien für Versuchsprotokolle Vorgabe einer Tabelle zum Zusammenhang von pH-Wert und Oxoniumionenkonzentration
Chemisches Gleichgewicht - Definition - Beschreibung auf Teilchenebene - Modellvorstellungen	Stoffeigenschaften (K2). erläutern die Merkmale eines chemischen Gleichgewichtszustands an ausgewählten Beispielen (UF1).	gabe von Salzsäure bzw. Natronlauge Ergebnis: Umkehrbarkeit / Reversibilität der Reaktion Lehrervortrag: Chemisches Gleichgewicht als allgemeines Prinzip vieler chemischer Reaktionen, Definition Arbeitsblatt: Umkehrbare Reaktionen auf Teilchenebene ggf. Simulation Modellexperiment: z.B. Stechheber-Versuch,	
Ozean und Gleichgewichte - Aufnahme CO ₂	beschreiben und erläutern das chemische Gleichgewicht mithilfe von Modellen (E6). formulieren Hypothesen zur Beeinflussung natürlicher Stoffkreisläufe (u.a. Kohlen- stoffdioxid-Carbonat-Kreislauf) (E3).	Kugelspiel Vergleichende Betrachtung: Chemisches Gleichgewicht auf der Teilchenebene, im Modell und in der Realität Wiederholung: CO ₂ - Aufnahme in den Meeren	Hier nur Prinzip von Le Chatelier, kein MWG

 Einfluss der Bedingungen der Ozeane auf die Löslichkeit von CO₂ Prinzip von Le Chatelier Kreisläufe 	erläutern an ausgewählten Reaktionen die Beeinflussung der Gleichgewichtslage durch eine Konzentrationsänderung (bzw. Stoffmengenänderung), Temperaturänderung (bzw. Zufuhr oder Entzug von Wärme) und Druckänderung (bzw. Volumenänderung) (UF3). formulieren Fragestellungen zum Problem des Verbleibs und des Einflusses anthropogen erzeugten Kohlenstoffdioxids (u.a. im Meer) unter Einbezug von Gleichgewichten (E1).	Schülerexperimente: Einfluss von Druck und Temperatur auf die Löslichkeit von CO ₂ ggf. Einfluss des Salzgehalts auf die Löslichkeit Beeinflussung von chemischen Gleichgewichten (Verallgemeinerung) Puzzlemethode: Einfluss von Druck, Temperatur und Konzentration auf Gleichgewichte, Vorhersagen Erarbeitung: Wo verbleibt das CO ₂ im Ozean? Partnerarbeit: Physikalische/Biologische Kohlenstoffpumpe	Fakultativ: Mögliche Ergän- zungen (auch zur individuellen Förde- rung): - Tropfsteinhöhlen - Kalkkreislauf - Korallen
	zum Kohlenstoffdioxid-Carbonat-Kreislauf grafisch oder durch Symbole (K3).	Arbeitsblatt: Graphische Darstellung des marinen Kohlenstoffdioxid-Kreislaufs	recallori
Klimawandel - Informationen in den Medien - Möglichkeiten zur Lösung des CO ₂ - Problems	recherchieren Informationen (u.a. zum Kohlenstoffdioxid-Carbonat-Kreislauf) aus unterschiedlichen Quellen und strukturieren und hinterfragen die Aussagen der Informationen (K2, K4).	Recherche - aktuelle Entwicklungen - Versauerung der Meere - Einfluss auf den Golfstrom/Nordatlantik- strom	
FIUDICITIS	beschreiben die Vorläufigkeit der Aussagen von Prognosen zum Klimawandel (E7). beschreiben und bewerten die gesellschaftliche Relevanz prognostizierter Folgen des anthropogenen Treibhauseffektes (B3).	 Diskussion Prognosen Vorschläge zu Reduzierung von Emissionen Verwendung von CO₂ 	
	zeigen Möglichkeiten und Chancen der Verminderung des Kohlenstoffdioxidaus-	Zusammenfassung: z.B. Film "Treibhaus Erde" aus der Reihe "Total Phänomenal" des SWR	

stoßes und der Speicherung des Kohler stoffdioxids auf und beziehen politisch und gesellschaftliche Argumente und eth sche Maßstäbe in ihre Bewertung ein (B3 B4).	Weitere Recherchen
--	--------------------

Diagnose von Schülerkompetenzen:

• Lerndiagnose: Stoffmenge und Molare Masse (Arbeitsblatt)

<u>Leistungsbewertung:</u>

• Schriftliche Übung zur Beeinflussung von chemischen Gleichgewichten, ggf. Klausur

Beispielhafte Hinweise zu weiterführenden Informationen:

Ausführliche Hintergrundinformationen und experimentelle Vorschläge zur Aufnahme von CO₂ in den Ozeanen findet man z.B. unter:

http://systemerde.ipn.uni-kiel.de/materialien Sek2 2.html

ftp://ftp.rz.uni-kiel.de/pub/ipn/SystemErde/09 Begleittext oL.pdf

Die Max-Planck-Gesellschaft stellt in einigen Heften aktuelle Forschung zum Thema Kohlenstoffdioxid und Klima vor:

http://www.maxwissen.de/Fachwissen/show/0/Heft/Kohlenstoffkreislauf.html

http://www.maxwissen.de//Fachwissen/show/0/Heft/Klimarekonstruktion

http://www.maxwissen.de/Fachwissen/show/0/Heft/Klimamodelle.html

Informationen zum Film "Treibhaus Erde":

http://www.planet-schule.de/wissenspool/total-phaenomenal/inhalt/sendungen/treibhaus-erde.html

Einführungsphase - Unterrichtsvorhaben III:

Kontext: Methoden der Kalkentfernung im Haushalt

Basiskonzepte (Schwerpunkt):

Basiskonzept Chemisches Gleichgewicht Basiskonzept Energie

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- ausgewählte Phänomene und Zusammenhänge erläutern und dabei Bezüge zu übergeordneten Prinzipien, Gesetzen und Basiskonzepten der Chemie herstellen (UF1).
- die Einordnung chemischer Sachverhalte und Erkenntnisse in gegebene fachliche Strukturen begründen (UF3).

Kompetenzbereich Erkenntnisgewinnung:

- zur Klärung chemischer Fragestellungen begründete Hypothesen formulieren und Möglichkeiten zu ihrer Überprüfung angeben (E3).
- Daten bezüglich einer Fragestellung interpretieren, daraus qualitative und quantitative Zusammenhänge ab- leiten und diese in Form einfacher funktionaler Beziehungen beschreiben (E5).

Kompetenzbereich Kommunikation:

• Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge (K1).

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltliche Schwerpunkte:

♦ Gleichgewichtsreaktionen

Zeitbedarf: ca. 18 Std. à 45 Minuten

Einführungsphase - Unterrichtsvorhaben III

Kontext: Methoden der Kalkentfernung im Haushalt				
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen				
Inhaltliche Schwerpunkte:		Schwerpunkte übergeordneter Komp	etenzerwartungen:	
 Gleichgewichtsreaktionen 		 UF1 – Wiedergabe 		
		 UF3 – Systematisierung 		
		E3 – Hypothesen		
		E5 – Auswertung		
		 K1 – Dokumentation 		
- **				
Zeitbedarf: 18 Std. a 45 Minuten		Basiskonzepte:		
		Basiskonzept Chemisches Gleichgewic	ht	
	I	Basiskonzept Energie		
Sequenzierung inhaltlicher	Konkretisierte Kompetenzerwartun-	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen	
Aspekte	gen des Kernlehrplans		Didaktisch-methodische Anmerkungen	
Kalkentfernung	planen quantitative Versuche (u.a. zur	Brainstorming: Kalkentfernung im	Anbindung an CO2-	
- Reaktion von Kalk mit		Haushalt	Kreislauf: Sedimentation	
Säuren	einer chemischen Reaktion), führen			
- Beobachtungen eines	diese zielgerichtet durch und dokumen-	Schülerversuch: Entfernung von	Wiederholung Stoffmenge	
Reaktionsverlaufs	tieren die Ergebnisse (E2, E4).	Kalk mit Säuren		
- Reaktionsgeschwindig-		11.4		
keit berechnen	stellen für Reaktionen zur Untersu-	Ideen zur Untersuchung des zeitli-		
	chung der Reaktionsgeschwindigkeit	chen Verlaufs		
	den Stoffumsatz in Abhängigkeit von der Zeit tabellarisch und graphsch dar	Schülerexperiment:		
	(K1).	Planung, Durchführung und Auswer-	S. berechnen die Reaktions-	
	(IXI).	tung eines entsprechenden Versuchs	geschwindigkeiten für ver-	
	erläutern den Ablauf einer chemischen	(z.B. Auffangen des Gases)	schiedene Zeitintervalle im	
	Reaktion unter dem Aspekt der Ge-	(2.5. / Grandingeri des Gases)	Verlauf der Reaktion	
	schwindigkeit und definieren die Reak-	(Haus-)Aufgabe: Ermittlung von Re-	volladi doi rediktion	
	tionsgeschwindigkeit als Differenzen-	aktionsgeschwindigkeiten an einem		
	quotienten $\Delta c/\Delta t$ (UF1).	Beispiel		

Finfluor out die Beeldieners	formationen livrosthesess Circlines	Coht dag augh aghrallar?	
Einfluss auf die Reaktionsge-	formulieren Hypothesen zum Einfluss	Geht das auch schneller?	
schwindigkeit - Einflussmöglichkeiten	verschiedener Faktoren auf die Reakti- onsgeschwindigkeit und entwickeln	Arbeitsteilige Schülerexperimente:	
- Parameter (Konzentrati-	Versuche zu deren Überprüfung (E3).	Abhängigkeit der Reaktionsgeschwin-	
on, Temperatur, Zertei-	versuche zu deren oberprüfung (£3).	digkeit von der Konzentration, des	
lungsgrad)	interpretieren den zeitlichen Ablauf	Zerteilungsgrades und der Tempera-	
- Kollisionshypothese	chemischer Reaktionen in Abhängigkeit	tur	
- Geschwindigkeitsgesetz	von verschiedenen Parametern (u.a.	tai	
für bimolekulare Reakti-	Oberfläche, Konzentration, Temperatur)	Lerntempoduett / Partnerarbeit:	
onen	(E5).	Stoßtheorie, Deutung der Einfluss-	
- RGT-Regel	(=3).	möglichkeiten	
3	erklären den zeitlichen Ablauf chemi-	3	ggf. Simulation
	scher Reaktionen auf der Basis einfa-	Erarbeitung: Einfaches Geschwin-	33
	cher Modelle auf molekularer Ebene	digkeitsgesetz, Vorhersagen	
	(u.a. Stoßtheorie nur für Gase) (E6).		
		Diskussion: RGT-Regel, Ungenauig-	
	beschreiben und beurteilen Chancen	keit der Vorhersagen	
	und Grenzen der Beeinflussung der		
	Reaktionsgeschwindigkeit und des		
	chemischen Gleichgewichts (B1).		
Einfluss der Temperatur	interpretieren ein einfaches Energie-	Wiederholung: Energie bei chemi-	
- Ergänzung Kollisionshy-	Reaktionsweg-Diagramm (E5, K3).	schen Reaktionen / Aktivierungsener-	
pothese	Reaktionsweg Diagramm (Lo, No).	gie	
- Aktivierungsenergie	beschreiben und erläutern den Einfluss	9.0	
- Katalyse	eines Katalysators auf die Reaktions-		
	geschwindigkeit mithilfe vorgegebener	Schülerexperiment: Katalysatoren,	Film: Wilhelm Ostwald und
	graphischer Darstellungen (UF1, UF3).	z.B. bei der Zersetzung von Wasser-	die Katalyse (Meilensteine
	,	stoffperoxid	der Naturwissenschaft und
			Technik)
Chemisches Gleichgewicht		Arbeitsblatt: Von der Reaktionsge-	
quantitativ	wichtsreaktionen das Massenwirkungs-	schwindigkeit zum chemischen	
- Wiederholung Gleich-	gesetz (UF3).	Gleichgewicht	
gewicht	interpretieren Cleichgewichtskansten	Labraryartrag: Einführung das Mas	
- Hin- und Rückreaktion	interpretieren Gleichgewichtskonstan-	Lehrervortrag: Einführung des Mas-	

 Massenwirkungsgesetz Beispielreaktionen 	ten in Bezug auf die Gleichgewichtslage (UF4). dokumentieren Experimente in angemessener Fachsprache (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen, zur Einstellung einer Gleichgewichtsreaktion, zu Stoffen und Reaktionen eines natürlichen Kreislaufes) (K1).	
Diagnose von Schülerkompetenz	beschreiben und beurteilen Chancen und Grenzen der Beeinflussung der Reaktionsgeschwindigkeit und des chemischen Gleichgewichts (B1).	

<u>Diagnose von Schülerkompetenzen:</u>

Protokolle, Auswertung Trainingsaufgabe

Leistungsbewertung:

• Schriftliche Übung, ggf. Klausur, mündliche Beiträge, Versuchsprotokolle

Einführungsphase - Unterrichtsvorhaben IV

Kontext: Vom Alkohol zum Aromastoff

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft, Basiskonzept Donator - Akzeptor

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- zur Lösung von Problemen in eingegrenzten Bereichen chemische Konzepte auswählen und anwenden und dabei Wesentliches von Unwesentlichem unterscheiden (UF2).
- die Einordnung chemischer Sachverhalte und Erkenntnisse in gegebene fachliche Strukturen begründen (UF3).

Kompetenzbereich Erkenntnisgewinnung:

- kriteriengeleitet beobachten und erfassen und gewonnene Ergebnisse frei von eigenen Deutungen beschreiben (E2).
- unter Beachtung von Sicherheitsvorschriften einfache Experimente zielgerichtet planen und durchführen und dabei mögliche Fehler betrachten (E4).

Kompetenzbereich Kommunikation:

- in vorgegebenen Zusammenhängen selbstständig chemische und anwendungsbezogene Fragestellungen mithilfe von Fachbüchern und anderen Quellen bearbeiten (K 2).
- chemische Sachverhalte, Arbeitsergebnisse und Erkenntnisse adressatengerecht sowie formal, sprachlich und fachlich korrekt in Kurzvorträgen oder kurzen Fachtexten darstellen (K3).

Kompetenzbereich Bewertung:

- bei Bewertungen in naturwissenschaftlich-technischen Zusammenhängen Bewertungskriterien angeben und begründet gewichten (B 1).
- für Bewertungen in chemischen und anwendungsbezogenen Zusammenhängen kriteriengeleitet Argumente abwägen und einen begründeten Standpunkt beziehen (B 2).

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltliche Schwerpunkte:

• Organische (und anorganische) Kohlenstoffverbindungen

Zeitbedarf: ca. 38 Std. à 45 Minuten

Einführungsphase - Unterrichtsvorhaben IV

Kontext: Vom Alkohol zum Aromastoff				
Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen				
Inhaltliche Schwerpunkte:		Schwerpunkte übergeordneter	Kompetenzerwartungen:	
 Organische (und anorganische) Kohlenstoffverbindungen UF1 – Wiedergabe UF2 – Auswahl UF3 – Systematisierung E2 – Wahrnehmung und Messung E4 – Untersuchungen und Experimente K2 – Recherche K3 – Präsentation B1 – Kriterien B2 – Entscheidungen Basiskonzepte (Schwerpunkte): Basiskonzept Struktur-Eigenschaft Basiskonzept Donator-Akzeptor		xperimente :		
Sequenzierung inhaltli- cher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Me- thoden	Verbindliche Absprachen Didaktisch-methodische Anmer- kungen	
Wenn Wein umkippt Oxidation von Ethanol zu The reference and the second	erklären die Oxidationsreihen der Alkohole auf molekularer Ebene und ordnen den Atomen Oxidationszahlen zu (UF2).	Mind Map Test zur Eingangsdiagnose	Anlage einer Mind Map , die im Laufe der Unterrichtssequenz erweitert wird.	
 Ethansäure Aufstellung des Redoxschemas unter Verwendung von Oxidationszahlen Regeln zum Aufstellen von Redoxschemata 	beschreiben Beobachtungen von Experimenten zu Oxidationsreihen der Alkohole und interpretieren diese unter dem Aspekt des Donator-Akzeptor-Prinzips (E2, E6).	Demonstration von zwei Flaschen Wein, eine davon ist seit 2 Wochen geöffnet. S-Exp.: pH Wert-Bestimmung, Geruch, Farbe von Wein und "umgekipptem" Wein	Diagnose: Begriffe, die aus der S I bekannt sein müssten: funktionelle Gruppen, Hydroxylgruppe, intermolekulare Wechselwirkungen, Redoxreaktionen, Elektronendonator / - akzeptor, Elektronegativität, Säure, saure Lösung. Nach Auswertung des Tests: Be-	

			reitstellung von individuellem Fördermaterial zur Wiederholung an entsprechenden Stellen in der Unterrichtssequenz.
 Alkohol im menschlichen Körper Ethanal als Zwischenprodukt der Oxidation Nachweis der Alkanale Biologische Wirkungen des Alkohols Berechnung des Blutalkoholgehaltes Alkotest mit dem Drägerröhrchen (fakultativ) 	dokumentieren Experimente in angemessener Fachsprache (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen, zur Einstellung einer Gleichgewichtsreaktion, zu Stoffen und Reaktionen eines natürlichen Kreislaufs). (K1) zeigen Vor- und Nachteile ausgewählter Produkte des Alltags (u.a. Aromastoffe, Alkohole) und ihrer Anwendung auf, gewichten diese und beziehen begründet Stellung zu deren Einsatz (B1, B2).	Concept-Map zum Arbeits- blatt: Wirkung von Alkohol S-Exp.: Fehling- und Tollens- Probe fakultativ: Niveaudifferenzierte Aufgabe zum Redoxschema der Alkotest- Reaktion	Wiederholung: Redoxreaktionen
Ordnung schaffen: Eintei- lung organischer Verbin- dungen in Stoffklassen	nutzen bekannte Atom- und Bindungsmo- delle zur Beschreibung organischer Mole- küle und Kohlenstoffmodifikationen (E6).		Wiederholung: Elektronegativität, Atombau, Bindungslehre, intermole- kulare Wechselwirkungen
Alkane und Alkohole als Lösemittel Löslichkeit funktionelle Gruppe intermolekulare Wechselwirkungen: van-der-Waals Ww. und Wasserstoffbrücken homologe Reihe und physikalische Eigenschaften	benennen ausgewählte organische Verbindungen mithilfe der Regeln der systematischen Nomenklatur (IUPAC) (UF3). ordnen organische Verbindungen aufgrund ihrer funktionellen Gruppen in Stoffklassen ein (UF3). erklären an Verbindungen aus den Stoffklassen der Alkane und Alkene das C-C-Verknüpfungsprinzip (UF2).	 S-Exp.: Löslichkeit von Alkoholen und Alkanen in verschiedenen Lösemitteln. Arbeitspapiere: Nomenklaturregeln und - übungen intermolekulare Wechselwirkungen. 	Fächerübergreifender Aspekt Biologie: Intermolekulare Wechselwirkungen sind Gegenstand der EF in Biologie (z.B. Proteinstrukturen).

 Nomenklatur nach IUPAC Formelschreibweise: Verhältnis-, Summen-, Strukturformel Verwendung ausgewählter Alkohole Alkanale, Alkanone und Carbonsäuren – Oxidationsprodukte der Alkanole Oxidation von Propanol Unterscheidung primärer, sekundärer und tertiärer Alkanole durch ihre Oxidierbarkeit Gerüst- und Positionsisomerie am Bsp. der Propanole Molekülmodelle Homologe Reihen der Alkanale, Alkanone und Carbonsäuren Nomenklatur der Stoffklassen und funktionellen Gruppen Eigenschaften und Verwendungen Künstlicher Wein? 	beschreiben den Aufbau einer homologen Reihe und die Strukturisomerie (Gerüstisomerie und Positionsisomerie) am Beispiel der Alkane und Alkohole.(UF1, UF3) erläutern ausgewählte Eigenschaften organischer Verbindungen mit Wechselwirkungen zwischen den Molekülen (u.a. Wasserstoffbrücken, van-der-Waals-Kräfte) (UF1, UF3). beschreiben und visualisieren anhand geeigneter Anschauungsmodelle die Strukturen organischer Verbindungen (K3). wählen bei der Darstellung chemischer Sachverhalte die jeweils angemessene Formelschreibweise aus (Verhältnisformel, Summenformel, Strukturformel) (K3). beschreiben den Aufbau einer homologen Reihe und die Strukturisomerie (Gerüstisomerie und Positionsisomerie) am Beispiel der Alkane und Alkohole.(UF1, UF3)	S-Exp.: Oxidation von Propanol mit Kupferoxid Oxidationsfähigkeit von primären, sekundären und tertiären Alkanolen, z.B. mit KMnO ₄ . Gruppenarbeit: Darstellung von Isomeren mit Molekülbaukästen. S-Exp.: Lernzirkel Carbonsäuren.	Wiederholung: Säuren und saure Lösungen. Der Film eignet sich als Einführung
a) Aromen des Weins Gaschromatographie zum	eines Gaschromatogramms und entnehmen diesem Informationen zur Identifizierung eines Stoffes (E5).	Wein: Quarks und Co (10.11.2009)_ab 34. Minute	ins Thema künstlicher Wein und zur Vorbereitung der Diskussion über Vor- und Nachteile künstlicher Aro-

Nachweis der Aromastoffe Aufbau und Funktion eines Gaschromatographen Identifikation der Aromastoffe des Weins durch Auswertung von Gaschromatogrammen Vor- und Nachteile künstlicher Aromastoffe: Beurteilung der Verwendung von Aromastoffen, z.B. von künstlichen Aromen in Joghurt oder Käseersatz Stoffklassen der Ester und Alkene: Inunktionelle Gruppen Stoffeigenschaften Struktur-Eigenschaftsbeziehungen	nutzen angeleitet und selbständig chemie- spezifische Tabellen und Nachschlage- werke zur Planung und Auswertung von Experimenten und zur Ermittlung von Stof- feigenschaften. (K2). beschreiben Zusammenhänge zwischen Vorkommen, Verwendung und Eigen- schaften wichtiger Vertreter der Stoffklas- sen der Alkohole, Aldehyde, Ketone, Car- bonsäuren und Ester (UF2). erklären an Verbindungen aus den Stoff- klassen der Alkane und Alkene das C-C- Verknüpfungsprinzip (UF2). analysieren Aussagen zu Produkten der organischen Chemie (u.a. aus der Wer- bung) im Hinblick auf ihren chemischen Sachverhalt und korrigieren unzutreffende Aussagen sachlich fundiert (K4). zeigen Vor- und Nachteile ausgewählter Produkte des Alltags (u.a. Aromastoffe, Alkohole) und ihrer Anwendung auf, ge- wichten diese und beziehen begründet	Gaschromatographie: Animation Virtueller Gaschromatograph. Arbeitsbblatt: Grundprinzip eines Gaschromatopraphen: Aufbau und Arbeitsweise Gaschromatogramme von Weinaromen. Diskussion: Vor- und Nachteile künstlicher Obstaromen in Joghurt, künstlicher Käseersatz auf Pizza, etc	men.
b) Synthese von Aro- mastoffen	Stellung zu deren Einsatz (B1, B2). ordnen Veresterungsreaktionen dem Reaktionstyp der Kondensationsreaktion begründet zu (UF1).	Experiment: Synthese von Essigsäureethylester und Analyse der Produkte.	Fächerübergreifender Aspekt Biologie:
EstersyntheseVergleich der Löslichkei-	führen qualitative Versuche unter vorge- gebener Fragestellung durch und proto-	S-Exp.: (arbeitsteilig) Synthese von Aromastoffen	Veresterung von Aminosäuren zu Polypeptiden in der EF.

dukte (Ester, Wasser) • Veresterung als unvoll-ständige Reaktion scher Verbindungen) (E2, E4). Gruppenarbeit: Darstellung der Edukte und Produkte der Estersynthese mit	
ständige Reaktion stellen anhand von Strukturformeln Ver- Produkte der Estersynthese mit	
mutungen zu Eigenschaften ausgewähl- ter Stoffe auf und schlagen geeignete Experimente zur Überprüfung vor (E3).	
Eigenschaften, Strukturen recherchieren angeleitet und unter vor- Recherche und Präsentation Bei den Ausarbeitungen so	
und Verwendungen organischer Stoffegegebenen Fragestellungen die Eigenschaften und Verwendungen ausgewählter Stoffe und präsentieren die Recherter(als Wiki, Poster oder Kurzter)Vielfalt der Verwendungsmören keiten von organischen Stoffebezugnahme auf deren fun	en unter
cheergebnisse adressatengerecht (K2, K3). Eigenschaften und Verwendung organischer Stoffe. Eigenschaften und Verwendung dargestellt werden. Mögliche Themen:	
beschreiben Zusammenhänge zwischen Vorkommen, Verwendung und Eigen- schaften wichtiger Vertreter der Stoff- klassen der Alkohole, Aldehyde, Ketone, Carbonsäuren und Ester (UF2). Carbonsäuren: Antioxidant (Konservierungsstoffe) Weinaromen: Abhängigkeit Rebsorte oder Anbaugebiet Terpene (Alkene) als sekun Pflanzenstoffe	d Alko- en von
Fakultativ: führen qualitative Versuche unter vorge-	
Herstellung eines Parfums gebener Fragestellung durch und proto-	
Duftpyramide	
Duftkreis Untersuchung der Eigenschaften organie eines Parfums Schor Verbindungen (F2, F4)	
Extraktionsverfahren	

Diagnose von Schülerkompetenzen:

• Eingangsdiagnose, Versuchsprotokolle

Leistungsbewertung:

• C-Map, Protokolle, Präsentationen, schriftliche Übungen, ggf. Klausur

Hinweise:

Internetquelle zum Download von frei erhältlichen Programmen zur Erstellung von Mind- und Concept Mapps:

http://www.lehrer-online.de/mindmanager-smart.php

http://cmap.ihmc.us/download/

Material zur Wirkung von Alkohol auf den menschlichen Körper: www.suchtschweiz.ch/fileadmin/user_upload/.../alkohol_koerper.pdf
Film zum historischen Alkotest der Polizei (Drägerröhrchen):

http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/16/oc/alkoholtest/alkoholtest.vlu/Page/vsc/de/ch/16/oc/alkoholtest/02 kaliumdichromatoxidation.vscml.html

Film zur künstlichen Herstellung von Wein und zur Verwendung künstlich hergestellter Aromen in Lebensmitteln, z.B. in Fruchtjoghurt:

http://medien.wdr.de/m/1257883200/quarks/wdr_fernsehen_quarks_und_co_20091110.mp4

Animation zur Handhabung eines Gaschromotographen: Virtueller Gaschromatograph:

http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/3/anc/croma/virtuell_gc1.vlu.html

Gaschromatogramme von Weinaromen und weitere Informationen zu Aromastoffen in Wein:

http://www.forschung-frankfurt.uni-frankfurt.de/36050169/Aromaforschung_8-15.pdf

http://www.analytik-news.de/Fachartikel/Volltext/shimadzu12.pdf

http://www.lwg.bayern.de/analytik/wein getraenke/32962/linkurl 2.pdf

Journalistenmethode zur Bewertung der Verwendung von Moschusduftstoffen in Kosmetika: http://www.idn.uni-bremen.de/chemiedidaktik/material/Journalistenmethode%20Moschusduftstoffe.pdf

2.1.3 Konkretisierte Unterrichtsvorhaben Qualifikationsphase GK

Q1 Grundkurs - Unterrichtsvorhaben I

Kontext: Säuren und Basen in Alltagsprodukten: Konzentrationsbestimmungen von Essigsäure in Lebensmitteln

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht Basiskonzept Donator-Akzeptor

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

 Phänomene und Sachverhalte im Zusammenhang mit Theorien, übergeordneten Prinzipien und Gesetzen der Chemie beschreiben und erläutern (UF1)

Kompetenzbereich Erkenntnisgewinnung:

- komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden (E2)
- Experimente mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien einschließlich der Sicherheitsvorschriften durchführen oder deren Durchführung beschreiben (E4)
- Daten/Messwerte qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder auch mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern (E5)

Kompetenzbereich Kommunikation:

- bei der Dokumentation von Untersuchungen, Experimenten, theoretischen Überlegungen und Problemlösungen eine korrekte Fachsprache und fachübliche Darstellungsweisen verwenden (K1)
- zu chemischen und anwendungsbezogenen Fragestellungen relevante Informationen und Daten in verschiedenen Quellen, auch in ausgewählten wissenschaftlichen Publikationen, recherchieren, auswerten und vergleichend beurteilen (K2)

Inhaltsfeld: Säuren, Basen und analytische Verfahren

Inhaltliche Schwerpunkte:

- Eigenschaften und Struktur von Säuren und Basen
- Konzentrationsbestimmungen von Säuren und Basen

Zeitbedarf: ca. 22 Std. à 45 Minuten

Q1 Grundkurs - Unterrichtsvorhaben I

Kontext: Säuren und Basen in Alltagsprodukten: Konzentrationsbestimmungen von Essigsäure in Lebensmitteln			
Inhaltliche Schwerpunkte: • Eigenschaften und Struktur von Säuren und Basen • Konzentrationsbestimmungen von Säuren und Basen Zeitbedarf: • 22 Std. a 45 Minuten		Schwerpunkte übergeordneter Kompetenzerwartungen: UF1 Wiedergabe E2 Wahrnehmung und Messung E4 Untersuchungen und Experimente E5 Auswertung K1 Dokumentation K2 Recherche Basiskonzepte (Schwerpunkte): Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht Basiskonzept Donator-Akzeptor	
Sequenzierung inhaltli- cher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Me- thoden	Verbindliche Absprachen Didaktisch-methodische Anmer- kungen
Wie lässt sich der Säu- re-/ Basengehalt einer Lösung bestimmen? Konzentrationsbestim- mung durch Titration	identifizieren Säuren und Basen in Produkten des Alltags (UF1, UF3). planen Experimente zur Bestimmung der Konzentration von Säuren und Basen in Alltagsprodukten bzw. Proben aus der Umwelt angeleitet und selbstständig (E1, E3). erläutern das Verfahren einer Säure-Base-Titration mit Endpunktsbestimmung über einen Indikator, führen diese zielgerichtet	Mind Map Test zur Eingangsdiagnose	Diagnose: Begriffe, die aus der S I bekannt sein müssten: Redoxreaktionen, Elektronendonator / -akzeptor, Säure, saure Lösung. Nach Auswertung des Tests: Bereitstellung von individuellem Fördermaterial zur Wiederholung an entsprechenden Stellen in der Unterrichtssequenz. Anwendung der Beziehung m=n M [S. 21 (B4)] Anwendung der Beziehung n=c V

	durch und werten sie aus. bewerten durch eigene Experimente ge-		
	wonnene oder recherchierte Analyseer- gebnisse zu Säure-Base-Reaktionen auf der Grundlage von Kriterien der Produkt- qualität (B4).		
 Ohne Wasser nicht sauer! Säure-Base-Definitionen nach Brønsted Protonendonator /- 	beschreiben Säuren und Basen mithilfe des Säure-Base-Konzepts von Brønsted (UF1, UF3).		Wiederholung: Säuren und saure Lösungen
akzeptor Saure Salze	stellen eine Säure-Base-Reaktion in einem Funktionsschema dar und erklären daran das Donator-Akzeptor-Prinzip (K1, K3).	pH-Wertbestimmung von Lösungen von Säuren (z. B. HCl-Gas, Citronensäure) in Wasser	Beschreibung der Protolyse der Säuren
	zeigen an Protolysereaktionen auf, wie sich der Säure-Base-Begriff durch das Konzept von Brønsted verändert hat (E6, E7).	Lösen von Salzen in Wasser und pH-Wert Z.B. Sulfate Hydrogensulfate, versch. Phosphate Protolysegleichgewichte der Salze darstellen	Reaktionsgleichungen der Vorgänge beim Lösen Interpretation mit Hilfe von Brönsted
Spurensuche in reinem	erläutern die Autoprotolyse und das Io-	pH-Werte versch. Wasserpro-	Definition des pH-Wertes
Wasser	nenprodukt des Wassers (UF1).	ben	Wasser als Ampholyt
Autoprotolyse und lo-	haraahaan nii Warta wäaarigari jawaan	Bedeutung pH 7 Herstellen von Salzsäure	Ionenprodukt des Wassers
nenprodukt des Wassers • pH-Wert / pOH-Wert	berechnen pH-Werte wässriger Lösungen starker Säuren und starker Basen (Hydroxide) (UF2).	/Natronlauge best. Konzentrati- onen und pH-Wert-Messung	Berechnungen mit pH- und pOH- Werten
Starke Säuren, schwache	Interpretieren Protolysen als Gleichge-	SÜ: pH-Werte von Säuren glei-	Klassifikation von Ameisensäure
Säuren – worauf	wichtsreaktionen und beschreiben das	cher Konzentration bestimmen	Säurekonstante aus dem Gleichge-
kommt es an?	Gleichgewicht unter Nutzung des KS-		wicht berechnen
Die Säurekonstante Ks Nort	Wertes (UF2, UF3).		pK _s - Wert
pKs-WertBerechnung von pH- Werten	klassifizieren Säuren mithilfe von KS- und pKS-Werten (UF3).	Einteilung im "starke" und "Schwache" Säuren aufgrund der Dissoziation	Anwendung von MWG und pK _s -Werten

Klassifizierung von Säuren und Basen	berechnen pH-Werte wässriger Lösungen schwacher einprotoniger Säuren mithilfe des Massenwirkungsgesetzes (UF2). machen Vorhersagen zu Säure-Base-Reaktionen anhand von KS und pKS-Werten (E3). erklären fachsprachlich angemessen und mithilfe von Reaktionsgleichungen den Unterschied zwischen einer schwachen und einer starken Säure unter Einbeziehung des Gleichgewichtskonzepts (K3).	Vorhersagen für pH-Werte durch Berechnungen mit dem MWG	
	bewerten durch eigene Experimente gewonnene Analyseergebnisse zu Säure-Base-Reaktionen im Hinblick auf ihre Aussagekraft (u.a. Nennen und Gewichten von Fehlerquellen) (E4, E5).	Gruppenarbeit (arbeitsteilig) Titrationen von schwachen Säuren mit starken Basen und umgekehrt Darstellung der Ergebnisse im Vortrag mit Fehlerdiskussion	Genaues experimentelles Arbeiten, kritische Auseinandersetzung mit den eigenen und fremden Ergebnis- sen
pH-unempfindlich gegen Säuren und Basen • Puffersysteme	beurteilen den Einsatz, die Wirksamkeit und das Gefahrenpotenzial von Säuren und Basen in Alltagsprodukten (B1, B2).	Untersuchung der Wirkung von Säuren und Laugen aus Haus- haltsreinigern u. ä.	Kritischer Umgang mit Alltagschemi- kalien
	bewerten die Qualität von Produkten und Umweltparametern auf der Grundlage von Analyseergebnissen zu Säure-Base- Reaktionen (B1).	Internetrecherche: pH-Werte im menschlichen Körper und in Ökosystemen, Gefahren bei Änderungen des pH-Wertes	Begriff "Puffer" und seine biologische Bedeutung
	recherchieren zu Alltagsprodukten, in de- nen Säuren und Basen enthalten sind, und diskutieren unterschiedliche Aussagen zu deren Verwendung adressatengerecht (K2, K4).	Projekte: "Sodbrennen" und seine Verhinderung Puffersysteme im Blut	Evt. Besprechung der Henderson- Hesselbach -Gleichung
Diagnose von Schülerkompet	tenzen:		

• Eingangsdiagnose, Versuchsprotokolle

Leistungsbewertung:

• Protokolle, Präsentationen, schriftliche Übungen, ggf. Klausur

Q1 Grundkurs - Unterrichtsvorhaben II

Kontext: Säuren und Basen in Alltagsprodukten: Starke und schwache Säuren und Basen

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht Basiskonzept Donator-Akzeptor

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- zur Lösung chemischer Probleme zielführende Definitionen, Konzepte sowie funktionale Beziehungen zwischen chemischen Größen angemessen und begründet auswählen (UF2)
- chemische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren (UF3)

Kompetenzbereich Erkenntnisgewinnung:

• selbstständig in unterschiedlichen Kontexten chemische Probleme identifizieren, analysieren und in Form chemischer Fragestellungen präzisieren (E1)

Kompetenzbereich Bewertung:

 fachliche, wirtschaftlich-politische und ethische Maßstäbe bei Bewertungen von naturwissenschaftlich-technischen Sachverhalten unterscheiden und angeben (B1)

Inhaltsfeld: Säuren, Basen und analytische Verfahren

Inhaltliche Schwerpunkte:

- Eigenschaften und Struktur von Säuren und Basen
- Konzentrationsbestimmungen von Säuren und Basen

Zeitbedarf: ca. 8 Std. à 45 Minuten

Q1 Grundkurs - Unterrichtsvorhaben II

Kontext: Säuren und Basen in Alltagsprodukten: Starke und schwache Säuren und Basen			
Inhaltsfeld: Säuren, Base	en und analytische Verfahren		
Inhaltliche Schwerpunkte: • Eigenschaften und Struktur von Säuren und Basen • Konzentrationsbestimmungen von Säuren und Basen Zeitbedarf: • 8 Std. a 45 Minuten		Schwerpunkte übergeordneter Kompetenzerwartungen: UF2 Auswahl UF3 Systematisierung E1 Probleme und Fragestellungen B1 Kriterien Basiskonzepte (Schwerpunkte): Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht Basiskonzept Donator-Akzeptor	
Sequenzierung inhaltli- cher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Me- thoden	Verbindliche Absprachen Didaktisch-methodische Anmer- kungen
Titration auch ohne Indi- kator • Ermittlung und Inter- pretation von Titrati- onskurven	erklären das Phänomen der elektrischen Leitfähigkeit in wässrigen Lösungen mit dem Vorliegen frei beweglicher Ionen (E6).	Leitfähigkeitsprüfung von Salz- lösungen und Säuren	Wdh. Aus der Sek 1
Leitfähigkeitstitration	beschreiben das Verfahren der Leitfähig- keitstitration zur Konzentrationsbestim- mung von Säuren/Basen in Proben aus Alltagsprodukten oder der Umwelt und werten vorhandene Messdaten aus (E2, E4, E5).	Untersuchung der Änderung der Leitfähigkeit bei der Titration von Salzsäure mit Natronlauge bzw. Essigsäure mit Natronlauge Darstellung in einem I-V- diagramm	Graphische Darstellung der Änderung der Leitfähigkeit und Auswertung der Graphen
	dokumentieren die Ergebnisse einer Leitfähigkeitstitration mithilfe graphischer Darstellungen (K1).		

Reaktionen (B1)	Antacida bei Magenbeschwerden Wirkung von Säurehemmern	beurteilen den Einsatz, die Wirksamkeit und das Gefahrenpotenzial von Säuren und Basen in Alltagsprodukten (B1, B2). bewerten die Qualität von Produkten und Umweltparametern auf der Grundlage von Analyseergebnissen zu Säure-Base- Reaktionen (B1)	Wirkung von Kaisers Natron, Rennie u. ä. Antiacida im Rea- genzglas	Auswertung mit Hilfe von Reaktions- gleichungen Internet-Recherche: Wirksamkeit herkömmlicher Antiacida, moderne Antiacida wie Omep-akut
-----------------	---	--	---	---

Diagnose von Schülerkompetenzen:

Versuchsprotokolle

Leistungsbewertung:

Protokolle, Präsentationen, schriftliche Übungen, ggf. Klausur

Q1 Grundkurs - Unterrichtsvorhaben III

Kontext: Strom für Taschenlampe und Mobiltelefon

Basiskonzepte (Schwerpunkt):

Basiskonzept Donator-Akzeptor Basiskonzept Energie

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- chemische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren (UF3).
- Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines gut vernetzten chemischen Wissens erschließen und aufzeigen (UF4)

Kompetenzbereich Erkenntnisgewinnung:

- komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden (E2)
- Experimente mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien einschließlich der Sicherheitsvorschriften durchführen oder deren Durchführung beschreiben (E4)
- Modelle entwickeln sowie mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen chemische Prozesse erklären oder vorhersagen (E6).

Kompetenzbereich Kommunikation:

 zu chemischen und anwendungsbezogenen Fragestellungen relevante Informationen und Daten in verschiedenen Quellen, auch in ausgewählten wissenschaftlichen Publikationen, recherchieren, auswerten und vergleichend beurteilen (K2)

Kompetenzbereich Bewertung:

 Auseinandersetzungen und Kontroversen zu chemischen und anwendungsbezogenen Problemen differenziert aus verschiedenen Perspektiven darstellen und eigene Standpunkte auf der Basis von Sachargumenten vertreten (B2)

Inhaltsfeld: Elektrochemie

Inhaltliche Schwerpunkte:

♦ Mobile Energiequellen

Zeitbedarf: ca. 22 Std. à 45 Minuten

Q1 Grundkurs - Unterrichtsvorhaben III

Kontext: Strom für Taschenlampe und Batterien			
Inhaltsfeld: Elektrochemie	Inhaltsfeld: Elektrochemie		
Inhaltliche Schwerpunkte: • Mobile Energiequellen		Schwerpunkte übergeordneter Kompetenzerwartungen: UF3 Systematisierung UF4 Vernetzung E2 Wahrnehmung und Messung E4 Untersuchungen und Experimente E6 Modelle K2 Recherche B2 Entscheidungen	
22 Std. a 45 Minuten	Zeitbedarf:		r chgewicht
Sequenzierung inhaltli- cher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktisch-methodische Anmer- kungen
Warum rostet Eisen, Gold aber nicht? Wenn Elektronen die Partner wechseln Donator-Akzeptor Prin-	erweitern die Vorstellung von Redoxreaktionen, indem sie Oxidationen/Reduktionen auf der Teilchenebene als Elektronen-Donator-Akzeptor-Reaktionen interpretieren (E6, E7).	Vergleich der Reaktion von Magnesium mit Sauerstoff und Chlor	Deutung auf Ionenebene, gleiche Bildung von Magnesium-Ionen, Ein- führung Donator-Akzeptor-Prinzip
zip • Redoxreihe der Metalle	stellen Oxidation und Reduktion als Teil- reaktionen und die Redoxreaktion als Ge- samtreaktion übersichtlich dar und be- schreiben und erläutern die Reaktionen fachsprachlich korrekt (K3).		Darstellung mit Hilfe von Teilglei- chungen für Oxidation und Redukti- on, Beschreibung der Elektronen- übergänge
	entwickeln Hypothesen zum Auftreten von Redoxreaktionen zwischen Metallen und	Eisennagel in Kupfersulfat- Lösung	Deutung der Bildung von Kupfer als

	Metallionen (E3).		Redoxreaktion
Wie lassen sich Redoxre-	erklären den Aufbau und die Funktions-	Zitronenbatterie, Daniell-	Galvanische Elemente zur Strom-
aktionen zur Stromgewin- nung nutzen?	weise einer galvanischen Zelle (UF1, UF3).	Element experimentell	gewinnung
RedoxpotentialeDaniell-Element	erläutern die Umwandlung von chemischer Energie in elektrische Energie und deren Umkehrung (E6).		Trennung der Oxidations- und Reduktionsreaktionen und Stromerzeugung
	dokumentieren Versuche zum Aufbau von galvanischen Zellen übersichtlich und nachvollziehbar (K1).		Schema der galvanischen Zellen und elektrischen Doppelschicht
Sind Redoxvorgänge vorhersagbar? Edle und unedle Metalle Standardpotentiale	beschreiben den Aufbau einer Standard- Wasserstoff-Halbzelle (UF1). berechnen Potentialdifferenzen unter Nut-	Aufbau einer Wasserstoff- Halbzelle im Experiment	Festlegung des Nullpunktes der Spannungsreihe durch die Wasser- stoff-Halbzelle, Normalpotentiale der Metalle
Spannungsreihe	zung der Standardelektrodenpotentiale und schließen auf die möglichen Redoxreaktionen (UF2, UF3).	Vergleich der Potentiale ver- schiedener Halbzellen im Ex- periment	Standardpotentiale zur Vorhersage von Stromfluss und Spannung
	planen Experimente zum Aufbau galvanischer Zellen, ziehen Schlussfolgerungen aus den Messergebnissen und leiten daraus eine Spannungsreihe ab (E2, E4, E5).		
Wie funktionieren Batterien bzw. Akkus? • Leclanché-Element	erklären Aufbau und Funktion elektroche- mischer Spannungsquellen aus Alltag und Technik (Batterie, Akkumulator, Brenn-	Untersuchung einer Taschen- lampenbatterie	Chemische Reaktionen in Batterie und Bleiakkumulator
Moderne BatterienBleiakkumulator	stoffzelle) unter Zuhilfenahme grundle- gender Aspekte galvanischer Zellen (u.a. Zuordnung der Pole, elektrochemische Redoxreaktion, Trennung der Halbzellen) (UF4).	Untersuchung eines Bleiakku- mulators	Unterschied Batterie - Akku
	analysieren und vergleichen galvanische Zellen bzw. Elektrolysen unter energeti- schen und stofflichen Aspekten (E1, E5).	z. B. Knopfzellen, Lithium-Ionen- Akku	Internetrecherche zu modernen Bat- terien / Akkus für Taschenrechner, Handys u. ä. transportable Geräte

recherchieren Informationen zum Aufbau mobiler Energiequellen und präsentieren mithilfe adressatengerechter Skizzen die Funktion wesentlicher Teile sowie Ladeund Entladevorgänge (K2, K3),

argumentieren fachlich korrekt und folgerichtig über Vorzüge und Nachteile unterschiedlicher mobiler Energiequellen und wählen dazu gezielt Informationen aus (K4).

diskutieren die gesellschaftliche Relevanz und Bedeutung der Gewinnung, Speicherung und Nutzung elektrischer Energie in der Chemie (B4), Vergleich verschiedener Energiequellen in Bezug auf ihre Anwendung, "maßgeschneiderte" Energiequellen

Diagnose von Schülerkompetenzen:

Versuchsprotokolle

Leistungsbewertung:

• Protokolle, Präsentationen, schriftliche Übungen, ggf. Klausur

Q1 Grundkurs - Unterrichtsvorhaben IV

Kontext: Von der Wasserelektrolyse zur Brennstoffzelle

Basiskonzepte (Schwerpunkt):

Basiskonzept Donator-Akzeptor Basiskonzept Energie

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

 zur Lösung chemischer Probleme zielführende Definitionen, Konzepte sowie funktionale Beziehungen zwischen chemischen Größen angemessen und begründet auswählen (UF2).

Kompetenzbereich Erkenntnisgewinnung:

- Modelle entwickeln sowie mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen chemische Prozesse erklären oder vorhersagen (E6).
- bedeutende naturwissenschaftliche Prinzipien reflektieren sowie Veränderungen in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen (E7).

Kompetenzbereich Kommunikation:

- bei der Dokumentation von Untersuchungen, Experimenten, theoretischen Überlegungen und Problemlösungen eine korrekte Fachsprache und fachübliche Darstellungsweisen verwenden (K1).
- sich mit anderen über chemische Sachverhalte und Erkenntnisse kritischkonstruktiv austauschen und dabei Behauptungen oder Beurteilungen durch Argumente belegen bzw. widerlegen (K4).

Kompetenzbereich Bewertung:

- fachliche, wirtschaftlich-politische und ethische Maßstäbe bei Bewertungen von naturwissenschaftlich-technischen Sachverhalten unterscheiden und angeben (B1).
- an Beispielen von Konfliktsituationen mit chemischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und ethisch bewerten (B3).

Inhaltsfeld: Elektrochemie

Inhaltliche Schwerpunkte:

- ♦ Mobile Energiequellen
- ♦ Elektrochemische Gewinnung von Stoffen

Zeitbedarf: ca. 14 Std. à 45 Minuten

Q1 Grundkurs - Unterrichtsvorhaben IV

Kontext: Von der Wasserelektrolyse zur Brennstoffzelle				
Inhaltsfeld: Elektrochemi	Inhaltsfeld: Elektrochemie			
Inhaltliche Schwerpunkte: • Elektrochemische Gewinnung von Stoffen • Mobile Energiequellen Zeitbedarf: ca. 14 Stunden à 45 Minuten Schwerpunkte übergeordneter Kompetenzer • UF2 Auswahl • E6 Modelle • E7 Vernetzung • K1 Dokumentation • K4 Argumentation • B1 Kriterien • B3 Werte und Normen Basiskonzepte (Schwerpunkte): Basiskonzept Donator-Akzeptor Basiskonzept Energie		petenzerwartungen:		
Sequenzierung inhaltlicher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktisch-methodische Anmerkungen	
Woher bekommt das Brennstoffzellen-Auto den Wasserstoff, seinen Brennstoff? • Elektrolyse • Zersetzungsspannung • Überspannung	beschreiben und erklären Vorgänge bei einer Elektrolyse (u.a. von Elektrolyten in wässrigen Lösungen) (UF1, UF3). deuten die Reaktionen einer Elektrolyse als Umkehr der Reaktionen einer galva-	Bild eines mit Wasserstoff betriebe- nen Brennstoffzellenautos oder Ein- satz einer Filmsequenz zum Betrieb eines mit Wasserstoff betriebenen Brennstoffzellenautos Demonstrationsexperiment zur Elektrolyse von angesäuertem Was- ser	Aufriss der Unterrichtsreihe: Sammlung von Möglichkeiten zum Betrieb eines Automobils: Verbrennungsmotoren (Benzin, Diesel, Erdgas), Alternativen: Akkumulator, Brennstoffzelle Beschreibung und Auswertung des Experimentes mit der intensiven Anwendung der Fachbegriffe: Pluspol, Minuspol,	
	nischen Zelle (UF4). erläutern die bei der Elektrolyse notwendige Zersetzungsspannung unter Be-	Beschreibung und Deutung der Versuchsbeobachtungen - Redoxreaktion - endotherme Reaktion	Anode, Kathode, Oxidation, Reduktion Fokussierung auf den energeti- schen Aspekt der Elektrolyse	

	rücksichtigung des Phänomens der Überspannung (UF2). erweitern die Vorstellung von Redoxreaktionen, indem sie Oxidationen/Reduktionen auf der Teilchenebene als Elektronen-Donator-Akzeptor-Reaktionen interpretieren (E6, E7).	- Einsatz von elektrischer Energie: <i>W</i> = <i>U*l*t</i> Schüler- oder Lehrerexperiment zur Zersetzungsspannung Die Zersetzungsspannung ergibt sich aus der Differenz der Abscheidungspotentiale. Das Abscheidungspotential an einer Elektrode ergibt sich aus der Summe des Redoxpotentials und dem Überpotential.	Ermittlung der Zersetzungs- spannung durch Ablesen der Spannung, bei der die Elektro- lyse deutlich abläuft (Keine Stromstärke-Spannungs-Kurve)
Wie viel elektrische Energie benötigt man zur Gewinnung einer Wasserstoffportion? • Quantitative Elektrolyse • Faraday-Gesetze	erläutern und berechnen mit den Faraday-Gesetzen Stoff- und Energieumsätze bei elektrochemischen Prozessen (UF2). dokumentieren Versuche zum Aufbau von galvanischen Zellen und Elektrolysezellen übersichtlich und nachvollziehbar (K1).	Schülerexperimente oder Lehrerdemonstrationsexperimente zur Untersuchung der Elektrolyse in Abhängigkeit von der Stromstärke und der Zeit. Formulierung der Gesetzmäßigkeit: n ~ I*t Lehrervortrag Formulierung der Faraday-Gesetze / des Faraday-Gesetzes Beispiele zur Verdeutlichung der Berücksichtigung der Ionenladung Einführung der Faraday-Konstante, Formulierung des 2. Faraday`schen Gesetzes	Schwerpunkte: Planung (bei leistungsstärkeren Gruppen Hypothesenbildung), tabellarische und grafische Auswertung mit einem <i>Tabellenkalkulationsprogramm</i> Vorgabe des molaren Volumens $V_m = 24$ L/mol bei Zimmertemperatur und 1013 hPa Differenzierende Formulierungen: Zur Oxidation bzw. Reduktion von 1 mol z-fach negativ bzw. positiv geladener Ionen ist eine Ladungsmenge $Q = z^*$ 96485 A*s notwendig. Für Lernende, die sich mit Größen leichter tun: $Q = n^*z^*F$; $F = 96485$ A*s*mol ⁻¹ Zunächst Einzelarbeit, dann Partner- oder Gruppenarbeit; Hilfekarten mit Angaben auf unterschiedlichem Niveau,

	erläutern und beurteilen die elektrolytische Gewinnung eines Stoffes aus ökonomischer und ökologischer Perspektive (B1, B3).	Aufgabenstellung zur Gewinnung von Wasserstoff und Umgang mit Größengleichungen zur Berechnung der elektrischen Energie, die zur Gewinnung von z.B. 1 m³ Wasserstoff notwendig ist. Zunächst eine Grundaufgabe; Vertiefung und Differenzierung mithilfe weiterer Aufgaben Diskussion: Wasserstoffgewinnung unter ökologischen und ökonomischen Aspekten	Lehrkraft wirkt als Lernhelfer. Anwendung des Faraday`schen Gesetzes und Umgang mit W =U*I*t Kritische Auseinandersetzung mit der Gewinnung der elektri- schen Energie (Kohlekraftwerk, durch eine Windkraft- oder So- larzellenanlage)
Wie funktioniert eine Wasserstoff-Sauerstoff-Brennstoffzelle? • Aufbau einer Wasserstoff-Sauerstoff-Brennstoffzelle • Vergleich einer Brennstoffzelle mit einer Batterie und einem Akkumulator	erläutern die Umwandlung von chemischer Energie in elektrische Energie und deren Umkehrung (E6). stellen Oxidation und Reduktion als Teilreaktionen und die Redoxreaktion als Gesamtreaktion übersichtlich dar und beschreiben und erläutern die Reaktionen fachsprachlich korrekt (K3).	Beschreibung und Erläuterung einer schematischen Darstellung einer Polymermembran- Brennstoffzelle Spannung eines Brennstoffzellen- Stapels (Stacks) Herausarbeitung der Redoxreaktio- nen	Einsatz der schuleigenen PEM- Zelle und schematische Dar- stellung des Aufbaus der Zelle; sichere Anwendung der Fach- begriffe: Pluspol, Minuspol, Anode, Kathode, Oxidation, Reduktion Vergleich der theoretischen Spannung mit der in der Praxis erreichten Spannung
Antrieb eines Kraftfahrzeugs heute und in der Zukunft Vergleich einer Brennstoffzelle mit einer Batterie und einem Akkumulator Verbrennung von Kohlenwasserstoffen, Ethanol/Methanol, Wasserstoff	argumentieren fachlich korrekt und folgerichtig über Vorzüge und Nachteile unterschiedlicher mobiler Energiequellen und wählen dazu gezielt Informationen aus (K4). vergleichen und bewerten innovative und herkömmliche elektrochemische Energiequellen (u.a. Wasserstoff-Brennstoffzelle) (B1).	Expertendiskussion zur vergleichenden Betrachtung von verschiedenen Brennstoffen (Benzin, Diesel, Erdgas) und Energiespeichersystemen (Akkumulatoren, Brennstoffzellen) eines Kraftfahrzeuges mögliche Aspekte: Gewinnung der Brennstoffe, Akkumulatoren, Brennstoffzellen, Reichweite mit einer Tankfüllung bzw. Ladung, Anschaffungskosten, Betriebskosten, Umweltbelastung	Die Expertendiskussion wird durch Rechercheaufgaben in Form von Hausaufgaben vorbereitet. Fakultativ: Es kann auch darauf eingegangen werden, dass der Wasserstoff z.B. aus Erdgas gewonnen werden kann.

Diagnose von Schülerkompetenzen:

• Selbstüberprüfung zum Umgang mit Begriffen und Größen zur Energie und Elektrizitätslehre und zu den Grundlagen der vorangegangenen Unterrichtsreihe (galvanische Zelle, Spannungsreihe, Redoxreaktionen)

Leistungsbewertung:

- Schriftliche Übung zu den Faraday-Gesetzen / zum Faraday-Gesetz, Auswertung von Experimenten, Diskussionsbeiträge
- Klausuren/ Facharbeit ...

Beispielhafte Hinweise zu weiterführenden Informationen:

Interessant ist die Abbildung von einem Brennstoffzellen-Bus mit Beschriftung, die z.B. auf "Null-Emissionen" hinweist, z.B. http://www.brennstoffzellenbus.de/bus/.

Im Internet sind auch animierte Darstellungen zu den chemischen Reaktionen, in vereinfachter Form, in einer Brennstoffzelle zu finden, z.B. http://www.brennstoffzellenbus.de/bzelle/index.html.

Die Chance der Energiespeicherung durch die Wasserstoffgewinnung mithilfe der Nutzung überschüssigen elektrischen Stroms aus Solar- und Windkraftanlagen wird dargestellt in http://www.siemens.com/innovation/apps/pof_microsite/ pof-spring-2012/http://www.siemens.com/innovation/apps/pof_microsite/http://www.siemens.com/innovation/apps/pof_microsite/http://www.siemens.com/innovation/apps/pof_microsite/http://www.siemens.com/innovation/apps/pof_microsite/http://www.siemens.com/innovation/apps/pof_microsite/http://www.siemens.com/innovation/apps/pof_microsite/htt

Sehr ergiebige Quelle zu vielen Informationen über die Wasserstoffenergiewirtschaft, Brennstoffzellen und ihre Eigenschaften http://www.diebrennstoffzelle.de.

Q1 Grundkurs - Unterrichtsvorhaben V

Kontext: Korrosion vernichtet Werte

Basiskonzepte (Schwerpunkt):

Basiskonzept Donator-Akzeptor Basiskonzept Energie

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- Phänomene und Sachverhalte im Zusammenhang mit Theorien, übergeordneten Prinzipien und Gesetzen der Chemie beschreiben und erläutern (UF1)
- chemische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren (UF3).

Kompetenzbereich Erkenntnisgewinnung:

• Modelle entwickeln sowie mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen chemische Prozesse erklären oder vorhersagen (E6).

Kompetenzbereich Bewertung:

 Auseinandersetzungen und Kontroversen zu chemischen und anwendungsbezogenen Problemen differenziert aus verschiedenen Perspektiven darstellen und eigene Standpunkte auf der Basis von Sachargumenten vertreten (B2)

Inhaltsfeld: Elektrochemie

Inhaltliche Schwerpunkte:

♦ Korrosion

Zeitbedarf: ca. 6 Std. à 45 Minuten

Q1 Grundkurs - Unterrichtsvorhaben V

Kontext: Korrosion				
Inhaltsfeld: Elektrochem	Inhaltsfeld: Elektrochemie			
Inhaltliche Schwerpunkte: • Korrosion Zeitbedarf: • 6 Std. a 45 Minuten		Schwerpunkte übergeordneter Kompetenzerwartungen: UF1: Wiedergabe UF3 Systematisierung E6 Modelle B2 Entscheidungen Basiskonzepte (Schwerpunkte): Basiskonzept Energie Basiskonzept Donator-Akzeptor		
Sequenzierung inhaltli- cher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Me- thoden	Verbindliche Absprachen Didaktisch-methodische Anmer- kungen	
Wie lässt sich Rosten verhindern? Wenn Elektronen die Partner wechseln • Lokalelemente	berechnen Potentialdifferenzen unter Nutzung der Standardelektrodenpotentiale und schließen auf die möglichen Redoxreaktionen (UF2, UF3).		Wdh. galvanische Elemente	
Korrosion / Korrosions- schutz	erläutern elektrochemische Korrosionsvorgänge (UF1, UF3). entwickeln Hypothesen zum Auftreten von Redoxreaktionen zwischen Metallatomen und Metallionen (E3).	SÜ Wasserstoffkorrosion Zn + HCl, Zn+ Cu + HCl	Lokalelemente zur Förderung der Korrosion	
	stellen Oxidation und Reduktion als Teil- reaktionen und die Redoxreaktion als Gesamtreaktion übersichtlich dar und beschreiben und erläutern die Reaktio- nen fachsprachlich korrekt (K3).	Sauerstoffkorrosion mit Eisen	Vergleich der Arten der Korrosion	

diskutieren Folgen von Korrosionsvor- gängen unter ökologischen und ökono- mischen Aspekten (B2).	Korrosionsschutz Demonstration Opferanode im Heißwasserbereiter Überzüge aus Zn / Sn bei Beschädigungen Referat: Möglichkeiten des Korrosionsschutzes	Bewertung der versch. Schutzmaß-
---	---	----------------------------------

Diagnose von Schülerkompetenzen:

Selbstüberprüfung zum Umgang mit Begriffen zur Korrosion

Leistungsbewertung:

- Auswertung von Experimenten, Diskussionsbeiträge
- Klausuren/ Facharbeit ...

Q1 Grundkurs - Unterrichtsvorhaben VI

Kontext: Vom fossilen Rohstoff zum Anwendungsprodukt

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht Basiskonzept Energie

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- chemische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren (UF3).
- Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines gut vernetzten chemischen Wissens erschließen und aufzeigen (UF4).

Kompetenzbereich Erkenntnisgewinnung:

- mit Bezug auf Theorien, Konzepte, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten (E3).
- Experimente mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien einschließlich der Sicherheitsvorschriften durchführen oder deren Durchführung beschreiben (E4).

Kompetenzbereich Kommunikation:

 chemische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren (K3).

Kompetenzbereich Bewertung:

• an Beispielen von Konfliktsituationen mit chemischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und ethisch bewerten (B3).

Inhaltsfeld: Organische Produkte - Werkstoffe und Farbstoffe

Inhaltliche Schwerpunkte:

Organische Verbindungen und Reaktionswege

Zeitbedarf: ca. 14 Std. à 45 Minuten

Q1 Grundkurs – Unterrichtsvorhaben VI

• Kontext: Vom fossilen	• Kontext: Vom fossilen Rohstoff zum Anwendungsprodukt			
Inhaltsfeld: Organische Pro	odukte – Werkstoffe und Farbstoffe			
Inhaltliche Schwerpunkte:		Schwerpunkte übergeordneter Ko	mpetenzerwartungen:	
 Organische Verbindunge 	n und Reaktionswege	 UF3 Systematisierung 		
		UF4 Vernetzung		
		 E3 Hypothesen 		
Zeitbedarf: ca. 14 Stunden à 45	Minuton	E4 Untersuchungen und Experin	nente	
Zenbedari. ca. 14 Stunden a 45	Miliuten	K3 Präsentation		
		B3 Werte und Normen		
		Basiskonzepte (Schwerpunkte):		
		Basiskonzept Struktur-Eigenschaft,		
		Basiskonzept Chemisches Gleichge	wicht,	
		Basiskonzept Energie		
Sequenzierung inhaltlicher	Konkretisierte Kompetenzerwartungen	Lehrmittel/ Materialien/ Metho-	Verbindliche Absprachen	
Aspekte	des Kernlehrplans	den	Didaktisch-methodische	
E 1"1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Die Schülerinnen und Schüler	D 111	Anmerkungen	
Erdöl, ein Gemisch vielfälti-	erklären Stoffeigenschaften mit zwi-	Demonstration von Erdöl und	Thema: Vom Erdöl zum Su-	
ger Kohlenwasserstoffe • Stoffklassen und Reaktions-	schenmolekularen Wechselwirkungen (u.a. Van-der-Waals-Kräfte, Dipol-Dipol-	Erdölprodukten: Erdöl, Teer, Pa-	perbenzin – Kartenabfrage vor Themenformulierung	
typen	Kräfte, Wasserstoffbrücken) (UF3, UF4).	raffin, Heizöl, Diesel, Superbenzin, Super E10, Schwefel	Thememormalierung	
• zwischenmolekulare Wech-	ritatic, wasserstolibruckerij (of 5, of 4).	ouper E10, ochwerer	Selbstständige Auswertung	
selwirkungen	verknüpfen Reaktionen zu Reaktionsfol-	Film: Gewinnung von Kohlen-	des Films mithilfe des Arbeits-	
Stoffklassen	gen und Reaktionswegen zur gezielten	wasserstoffen aus Erdöl	blattes; mündliche Darstellung	
homologe Reihe	Herstellung eines erwünschten Produktes	Die fraktionierende Destillation	der Destillation, Klärung des	
Destillation	(UF2, UF4).		Begriffs Fraktion	
Cracken		Arbeitsblatt mit Destillationsturm	Wdhlg.: Summenformel, Struk-	
- C. GOROTI	erklären Stoffeigenschaften und Reakti-		turformel, Nomenklatur; Stoff-	
	onsverhalten mit dem Einfluss der jeweili-	Arbeitsblätter zur Vielfalt der	klassen: Alkane, Cycloalkane,	
	gen funktionellen Gruppen und sagen	Kohlenwasserstoffe (Einzelarbeit,	Alkene, Cycloalkene, Alkine,	
	Stoffeigenschaften voraus (UF1).	Korrektur in Partnerarbeit)	Aromaten (ohne Erklärung der	
			Mesomerie), Nutzung des ein-	

	erläutern die Planung einer Synthese ausgewählter organischer Verbindungen sowohl im niedermolekularen als auch im makromolekularen Bereich (E4). verwenden geeignete graphische Darstellungen bei der Erläuterung von Reaktionswegen und Reaktionsfolgen (K1, K3). erläutern und bewerten den Einsatz von	Film: Verbrennung von Kohlenwasserstoffen im Otto- und Dieselmotor Arbeitsblatt mit Darstellung der Takte	geführten Schulbuchs Die Karten zu den Arbeitstakten müssen ausgeschnitten und in die Chemiemappe eingeklebt werden, die Takte sind zutreffend zu beschriften, intensives Einüben der Beschreibung und Erläuterung der Grafik
	Erdöl und nachwachsenden Rohstoffen für die Herstellung von Produkten des Alltags und der Technik (B3).	Grafik zur Zusammensetzung von Erdölen und zum Bedarf der Pro- dukte Demonstrationsexperiment zum Cracken Kraftfahrzeugbenzin – Verbrennung und Veredelung (Cracken, Reformieren)	Benzin aus der Erdöldestillation genügt dem Anspruch der heutigen Motoren nicht Einführung der Octanzahl, Wiederaufgreifen der Stoffklassen Versuchsskizze, Beschreibung und weitgehend selbstständige Auswertung
Wege zum gewünschten Produkt • elektrophile Addition • Substitution	formulieren Reaktionsschritte einer elektrophile Addition und erläutern diese (UF1). verknüpfen Reaktionen zu Reaktionsfolgen und Reaktionswegen zur gezielten Herstellung eines erwünschten Produktes (UF2, UF4). klassifizieren organische Reaktionen als Substitutionen, Additionen, Eliminierungen und Kondensationen (UF3).	Aufgabe zur Synthese des Anti- klopfmittels MTBE: Erhöhen der Klopffestigkeit durch MTBE (ETBE) Säurekatalysierte elektrophile Ad- dition von Methanol an 2- Methylpropen (Addition von Etha- nol an 2-Methylpropen) Übungsaufgabe zur Reaktion von Propen mit Wasser mithilfe einer	Übungsbeispiel um Sicherheit im Umgang mit komplexen Aufgabenstellungen zu gewinnen, Einzelarbeit betonen Einfluss des I-Effektes herausstellen, Lösen der Aufgabe in Partnerarbeit
	schätzen das Reaktionsverhalten organi-	Säure	

scher Verbindungen aus den Molekülstrukturen ab (u.a. I-Effekt, sterischer Effekt) (E3).	Abfassen eines Textes zur Beschreibung und Erläuterung der Reaktionsschritte	
verwenden geeignete graphische Darstel- lungen bei der Erläuterung von Reakti- onswegen und Reaktionsfolgen (K1, K3).		

<u>Diagnose von Schülerkonzepten:</u>

• Selbstüberprüfung zu Vorstellungen und Kenntnissen zu "Energieträgern"

Leistungsbewertung:

- Darstellen eines chemischen Sachverhalts, Aufstellen von Reaktionsschritten, Beschreibung und Erläuterung von Reaktionsschritten
- schriftliche Übung
- Klausuren/Facharbeit ...

Beispielhafte Hinweise zu weiterführenden Informationen:

Eine leicht verständliche Darstellung in 15 Minuten zu Aspekten der Entstehung des Erdöls, Suche nach Erdöl, Verarbeitung des Erdöls, Arbeit auf einer Erdölplattform und einer Havarie eines Erdöltankers findet man im Film "Multitalent Erdöl" des Schulfernsehens (Planet Schule): http://www.planet-schule.de/sf/php/02 sen01.php?sendung=6901.

In 6 Kurzfilmen werden auf der Video-DVD (4602475) "Erdölverarbeitung" die Aspekte: 1. Atmosphärische Destillation (6:30 Min.), 2. Vakuumdestillation (2:10 Min.), 3. Cracken (5:20 Min.), 4. Entschwefelung (6:30 Min.), 5. Benzinveredlung (6:30 Min.), 6. Schmierölverarbeitung (3:50 Min.) behandelt.

In der Video-DVD "Der Viertakt-Ottomotor" (4605559) wird in den ersten 8 Minuten das Funktionsprinzip des Motors veranschaulicht. In der Video-DVD "Der Viertakt-Dieselmotor (4605560) wird in den ersten 8 Minuten das Funktionsprinzip dieses Motors veranschaulicht. Zur Umweltrelevanz des Stoffes Methyltertiärbutylether (MTBE) unter besonderer Berücksichtigung des Gewässerschutzes finden sich Informationen des Umwelt Bundesamtes in: http://www.umweltbundesamt.de/wasser/themen/grundwasser/mtbe.htm. Die Seite einthält auch eine Tabelle zum MTBE-Anteil in verschiedenen Benzinsorten.

Zum Einsatz von ETBE findet man Informationen auf: http://www.aral.de/aral/sectiongenericarticle.do?categoryld=9011811&contentId=7022567. Eine kurze Simulation der Bromierung von Ethen mit Untertexten ist dargestellt in: http://www.chemiekiste.de/Chemiebox/Bromadd.htm.

Q 2 Grundkurs - Unterrichtsvorhaben I

Kontext: Wenn das Erdöl zu Ende geht

Basiskonzepte (Schwerpunkt):

Basiskonzept Donator-Akzeptor

Basiskonzept Chemisches Gleichgewicht

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines gut vernetzten chemischen Wissens erschließen und aufzeigen (UF4).

Kompetenzbereich Erkenntnisgewinnung:

- selbstständig in unterschiedlichen Kontexten chemische Probleme identifizieren, analysieren und in Form chemischer Fragestellungen präzisieren (E1).
- Experimente mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien einschließlich der Sicherheitsvorschriften durchführen oder deren Durchführung beschreiben (E4).

Kompetenzbereich Kommunikation:

 chemische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren (K3).

Kompetenzbereich Bewertung:

- an Beispielen von Konfliktsituationen mit chemischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und ethisch bewerten (B3).
- begründet die Möglichkeiten und Grenzen chemischer und anwendungsbezogener Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten (B4).

Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe

Inhaltlicher Schwerpunkt:

Organische Verbindungen und Reaktionswege

Zeitbedarf: ca. 10 Std. à 45 Minuten

Q2 Grundkurs - Unterrichtsvorhaben I

Kontext: Wenn das Erdöl zu Ende geht		
Inhaltsfeld: Organische Produkte – Werkstoffe und	d Farbstoffe	
Inhaltlicher Schwerpunkt: Organische Verbindungen und Reaktionswege Zeitbedarf: ca. 10 Stunden à 45 Minuten	Schwerpunkte übergeordneter Kompetenzerwartungen: UF4 Vernetzung E1 Probleme und Fragestellungen E4 Untersuchungen und Experimente K3 Präsentation B3 Werte und Normen B4 Möglichkeiten und Grenzen	
	 Basiskonzepte (Schwerpunkte): Basiskonzept Donator-Akzeptor Basiskonzept Chemisches Gleichgewicht 	

Sequenzierung inhalt- licher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktisch-methodische Anmerkungen
Kein Fahrspaß ohne Erdöl? - Biodiesel und E10 als mögliche Alternativen? • Struktur und Eigenschaften von Molekülen verschiedener organischer Stoffklassen	beschreiben den Aufbau der Moleküle (u. a. Strukturisomerie) und die charakteristischen Eigenschaften von Vertretern der Stoffklassen der Alkohole, Aldehyde, Ketone, Carbonsäuren und Ester und ihre chemischen Reaktionen (u. a. Veresterung, Oxidationsreihe der Alkohole) (UF1, UF3).	Kurzreferat, z. B. auf Basis eines Zeitungsartikels [1][2], zum vermuteten Ende des Ölzeitalters Ersatz von Kohlenwasserstoffen durch z. B. Ethanol, Methanol, Rapsölmethylester (Biodiesel)	Anknüpfung an den vorherigen Kontext <i>Vom fossilen Rohstoff zum Anwendungsprodukt</i> Die Recherche kann auch als Webquest durchgeführt werden [3].

Sequenzierung inhalt- licher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktisch-methodische Anmerkungen
 Umesterung (Additions- Eliminierungs- reaktion) 	erklären Stoffeigenschaften und Reakti- onsverhalten mit dem Einfluss der jeweili- gen funktionellen Gruppen und sagen Stof- feigenschaften vorher (UF1).	Information: Bioethanol als Bestandteil von Kraftstoffen, z. B. E10, E85 [4] Ausblick auf Biokraftstoffe erster und zweiter Generation [5]	Wiederholung aller Stoffklassen aus dem IF 1 (ggf. Reaktionsstern)
technische Gewin- nung von Biodiesel	erklären Stoffeigenschaften mit zwischen- molekularen Wechselwirkungen (u. a. Van- der-Waals-Kräfte, Dipol-Dipol-Kräfte, Was- serstoffbrückenbindungen) (UF3, UF4). klassifizieren organische Reaktionen als Substitutionen, Additionen, Eliminierungen und Kondensationen (UF3). verknüpfen Reaktionen zu Reaktionsfolgen und Reaktionswegen zur gezielten Herstel- lung eines erwünschten Produktes (UF2, UF4).	Erhöhte Aldehydemission bei der Nutzung von Alkoholkraftstoffen: Analyse der unvollständigen Verbrennungsprozesse von Ethanol im Verbrennungsmotor unter dem Aspekt "Oxidationsreihe der Alkohole", ggf. Rolle des Katalysators im Hinblick auf eine vollständige Oxidation Arbeitsblatt oder Recherche zu Inhaltsstoffen von Diesel und Biodiesel [7][8][9], deren molekularem Aufbau und Eigenschaften	Die Tatsache, dass Fahrzeuge, die mit Alkoholkraftstoff betrieben werden, eine höhere Emission an Aldehyden aufweisen [6], kann genutzt werden, um die Kompetenzerwartungen zur Oxidationsreihe der Alkohole zu festigen (siehe die entsprechende Kompetenzerwartung im IF1).
	erläutern die Planung einer Synthese ausgewählter organischer Verbindungen sowohl im niedermolekularen als auch im makromolekularen Bereich (E4). präsentieren die Herstellung ausgewählter organischer Produkte und Zwischenprodukte unter Verwendung geeigneter Skizzen oder Schemata (K3).	 Experiment: Herstellung von Rapsölmethylester (Biodiesel) [7][8][9] - Umesterung als Additions-Eliminierungsreaktion - Eigenschaften des Esters im Vergleich zu den Ausgangsstoffen Präsentation (z. B. als Poster): Aufbau und Funktion einer Produktionsanlage für Biodiesel [10] 	Vertiefung der elektrophilen Addition

Sequenzierung inhalt- licher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktisch-methodische Anmerkungen
Ökologische und öko- nomische Beurteilung von Biokraftstoffen	diskutieren Wege zur Herstellung ausge- wählter Alltagsprodukte (u. a. Kunststoffe) bzw. industrieller Zwischenprodukte aus ökonomischer und ökologischer Perspekti- ve (B1, B2, B3). beurteilen Nutzen und Risiken ausgewähl- ter Produkte der organischen Chemie un- ter vorgegebenen Fragestellungen (B4).	Filmausschnitt zum Einstieg in die Diskussion, z. B. <i>Die Biosprit-Lüge</i> [11] Podiumsdiskussion: Bewertung der konventionellen und alternativen Kraftstoffe der ersten und zweiten Generation anhand verschiedener Kriterien (z. B. ökonomische, ökologische, technische und gesellschaftliche Kriterien [14])	Pro- und Contra-Diskussion unter Einbeziehung der rechtlichen Grundlagen [12][13] Ggf. Ausblick: Zukünftige Bedeutung von Biokraftstoffen im Vergleich zu Antriebskonzepten mit Elektrizität oder Wasserstoff

Diagnose von Schülerkonzepten:

- Stoffklassen der organischen Chemie
- Ester und chemisches Gleichgewicht
- Oxidationsreihe der Alkohole

Leistungsbewertung:

- Kurzreferate
- Auswertung des Experimentes
- Präsentation (Poster)
- ggf. Schriftliche Übung

Weiterführendes Material:

•	http://www.welt.de/wirtschaft/energie/article148323100/Laut-BP-gibt-es-noch-im-Jahr-2050- Oel-im-Ueberfluss.html	Bericht über die These der Fa. BP, dass die Erdölvorräte noch lange nicht erschöpft sind
•	http://www.sueddeutsche.de/wirtschaft/studie-ueber-fossile-ressourcen-das-oel-geht-zur-neige-trotz-fracking-1.1632680	Bericht über eine Studie zu fossilen Ressour-

		cen, in der eine Prognose zur Erdölförderung in der Zukunft gestellt wird
•	http://www.lehrer-online.de/biosprit- zukunft.php?sid=64720561960531489145328262826790	Webquest zur Zukunft des Biosprits
•	http://www.sueddeutsche.de/auto/bioethanol-als-treibstoff-der-zukunft-futter-im-tank-1.1813027	Zeitungsartikel zum Thema "Bioethanol als Treibstoff der Zukunft"
•	http://www.umweltbundesamt.de/themen/verkehr-laerm/kraft-betriebsstoffe/alternative-kraftstoffe	Informationen zu alternativen Kraftstoffen
•	Dreyhaupt, Franz-Joseph [Hrsg.]: VDI-Taschenlexikon Immissionsschutz. Düsseldorf: VDI-Verlag, 1996, S. 26ff (Stichwort Alkoholkraftstoff)	Darstellung der Zusammenhänge zwischen Alkoholkraftstoff, unvollständiger Verbrennung, Aldehydemission und Oxidationskatalysator
•	http://sinus-sh.lernnetz.de/sinus/materialien/chemie/index.php?we_objectID=302	Verschiedene Materialien zu Biodiesel, u. a. Filme, eine Versuchsvorschrift zur Umesterung von Rapsöl etc.
•	http://www.schulbiologiezentrum.info/Arbeitsbl%E4tter%20Raps%20Raps%F6l%20Biodiesel%20Me210212.pdf	Umfangreiche Material- und Arbeitsblatt- sammlung zum Thema "Biodiesel", die auch Experimente beinhaltet
•	Eilks, Ingo: Biodiesel: Kontextbezogenes Lernen in einem gesellschaftskritisch- problemorientierten Chemieunterricht. In: PdN- Chemie in der Schule, Jg. 2001 (50), H. 1, S. 8-10	Beschreibung einer Unterrichtseinheit zum Thema Biodiesel"
•	https://www.hielscher.com/de/biodiesel transesterification 01.htm	Informationen zu einer Produktionsanlage für Biodiesel
•	Film: Die Biosprit-Lüge	Der Film thematisiert die Konkurrenz von Nahrungsmittelproduktion und Biospritherstellung anhand von Palmenplantagen in Idonesien (Ausführliche Beschreibung s. <i>Details</i> unter der Adresse http://programm.ard.de/TV/Programm/Alle-

		Sender/?sendung=287246052059380).
•	http://www.lehrer-online.de/biodiesel.php	WebQuest zum Thema Biodiesel
•	http://www.lehrer-online.de/tankstelle-der- zukunft.php?sid=64720561960531489145328262826790	Webquest Tankstelle der Zukunft: Vergleich und Bewertung verschiedener Kraftstoffarten:
•	Brysch, Stephanie: Biogene Kraftstoffe in Deutschland. Hamburg: Diplomica, 2008.	Studie zur Bewertung von Biokraftstoffen, die kriteriengeleitet Vor- und Nachteile ermittelt
•	Martin Schmied, Philipp Wüthrich, Rainer Zah, Hans-Jörg Althaus, Christa Friedl: Postfossile Energieversorgungsoptionen für einen treibhausgasneutralen Verkehr im Jahr 2050: Eine verkehrsträgerübergreifende Bewertung, Umweltbundesamt (2015): http://www.umweltbundesamt.de/publikationen/postfossile-energieversorgungsoptionen-fuer-einen	Grundlagenliteratur zur Frage zukünftiger Energieversorgung
•	Ruth Blanck et al. (Öko-Institut): Treibhausgasneutraler Verkehr 2050: Ein Szenario zur zunehmenden Elektrifizierung und dem Einsatz stromerzeugter Kraftstoffe im Verkehr, Berlin (2013) http://www.oeko.de/oekodoc/1829/2013-499-de.pdf	
•	http://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/bioenergie	
•	http://www.biokraftstoffverband.de/index.php/start.html u.a. aktuelle Informationen, z.B. Absatzzahlen für Biodiesel und Bioethanol	Informationen zu Biokraftstoffen vom Verband der Deutschen Biokraftstoffindustrie e.V.
•	http://www.ufop.de/biodiesel-und-co/biodiesel/biodiesel-tanken/	Informationen zu Biodiesel von der Union zur Förderung von Oel- und Proteinpflanzen e.V.

letzter Zugriff auf die URL am 16.03.2016

Q2 Grundkurs - Unterrichtsvorhaben II

Kontext: Maßgeschneiderte Produkte aus Kunststoffen

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- zur Lösung chemischer Probleme zielführende Definitionen, Konzepte sowie funktionale Beziehungen zwischen chemischen Größen angemessen und begründet auswählen (UF2).
- Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines gut vernetzten chemischen Wissens erschließen und aufzeigen (UF4).

Kompetenzbereich Erkenntnisgewinnung:

- mit Bezug auf Theorien, Konzepte, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten (E3).
- Experimente mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien einschließlich der Sicherheitsvorschriften durchführen oder deren Durchführung beschreiben (E4).
- Experimente mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien durchführen oder deren Durchführung beschreiben (E5).

Kompetenzbereich Kommunikation:

• chemische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren (K3).

Kompetenzbereich Bewertung:

• an Beispielen von Konfliktsituationen mit chemischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und ethisch bewerten (B3).

Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe

Inhaltliche Schwerpunkte:

- ♦ Organische Verbindungen und Reaktionswege
- ♦ Organische Werkstoffe

Zeitbedarf: ca. 24 Std. à 45 Minuten

59

Q2 Grundkurs - Unterrichtsvorhaben II

Kontext: Maßgeschneiderte Produkte aus Kunststoffen Inhaltsfeld 4: Organische Produkte – Werkstoffe und Farbstoffe			
Inhaltliche Schwerpunkte: Organische Verbindungen und Reaktionswege Organische Werkstoffe Zeitbedarf: 24 Std. à 45 Minuten		Schwerpunkte übergeordneter Kompetenzerwartungen: UF2 Auswahl UF4 Vernetzung E3 Hypothesen E4 Untersuchungen und Experimente E5 Auswertung K3 Präsentation B3 Werte und Normen Basiskonzepte (Schwerpunkt): Basiskonzept Struktur – Eigenschaft	
Sequenzierung inhaltli- cher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplansä Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktisch-methodische Anmerkungen
Die Vielfalt der Kunst- stoffe im Alltag: Eigenschaften und Verwendung • Eigenschaften von makromolekularen Verbindungen • Thermoplaste • Duromere • Elastomere	erläutern die Eigenschaften von Polymeren aufgrund der molekularen Strukturen (u.a. Kettenlänge, Vernetzungsgrad) und erklären ihre praktische Verwendung (UF2, UF4). untersuchen Kunststoffe auf ihre Eigenschaften, planen dafür zielgerichtete Experimente (u.a. zum thermischen Verhalten), führen diese durch und werten sie aus (E1, E2, E4, E5). ermitteln Eigenschaften von organischen	Demonstration: Plastiktüte, PET-Flasche, Joghurtbecher, Schaumstoff, Gehäuse eines Elektrogeräts (Duromer) S-Exp.: thermische u. a. Eigenschaften von Kunststoffproben Eingangstest: intermolekulare Wechselwirkungen, funktionelle Gruppen, Veresterung	Ausgehend von Kunststoffen in Alltagsprodukten werden deren Eigenschaften und Verwendungen erläutert. Thermoplaste (lineare und strauchähnlich verzweigte Makromoleküle, Van-der-Waals-Kräfte, Dipol-Dipol-Kräfte, Wasserstoffbrücken; amorphe und kristalline Bereiche), Duromere und Elastomere
zwischenmolekulare Wechselwirkungen	Werkstoffen und erklären diese anhand der Struktur (u.a. Thermoplaste, Elastomere und Duromere) (E5).	Materialien: Kunststoffe aus dem Alltag	(Vernetzungsgrad)

Vom Monomer zum Polymer: Bau von Polymeren und Kunststoffsynthesen Reaktionsschritte der radikalischen Polymerisation Polykondensation Polyester Polyamide: Nylonfasern	beschreiben und erläutern die Reaktionsschritte einer radikalischen Polymerisation (UF1, UF3). präsentieren die Herstellung ausgewählter organischer Produkte und Zwischenprodukte unter Verwendung geeigneter Skizzen oder Schemata.(K3) schätzen das Reaktionsverhalten organischer Verbindungen aus den Molekülstrukturen ab (u.a. I-Effekt, sterischer Effekt) (E3). erklären den Aufbau von Makromolekülen aus Monomer-Bausteinen und unterscheiden Kunststoffe aufgrund ihrer Synthese als Polymerisate oder Polykondensate (u.a. Polyester, Polyamide) (UF1, UF3). erläutern die Planung der Synthese ausgewählter organischer Verbindungen sowohl im niedermolekularen als auch im makromolekularen Bereich (E4).	 Schülerexperimente: Polymerisation von Styrol Polykondensation: Synthese einfacher Polyester aus Haushaltschemikalien, z.B. Polymilchsäure oder Polycitronensäure. "Nylonseiltrick" Schriftliche Überprüfung	Während der Unterrichtsreihe kann an vielen Stellen der Bezug zum Kontext Plastikgeschirr hergestellt werden. Polystyrol ist Werkstoff für Plastikgeschirr. Reaktionsschritte der radikalischen Polymerisation können in Lernprogrammen erarbeitet werden.
 Kunststoffverarbeitung Verfahren, z.B.: Spritzgießen Extrusionsblasformen Fasern spinnen 	recherchieren zur Herstellung, Verwendung und Geschichte ausgewählter organischer Verbindungen und stellen die Ergebnisse adressatengerecht vor (K2, K3).	Einsatz von Filmen und Animatio- nen zu den Verarbeitungsprozessen.	Internetrecherche zu den verschiedenen Verarbeitungsverfahren möglich. Die Geschichte ausgewählter
Geschichte der Kunst- stoffe			Kunststoffe kann in Form von Referaten erarbeitet werden.
Maßgeschneiderte Kunststoffe: Struktur-Eigenschafts-	verknüpfen Reaktionen zu Reaktionsfolgen und Reaktionswegen zur gezielten Herstel- lung eines erwünschten Produktes (UF2,	Recherche: Syntheseweg zur Herstellung von SAN aus Basischemikalien.	Als Beispiel für maßgeschneiderte Kunststoffe eignen sich Copolymerisate des Polysty-

beziehungen von Kunst- stoffen mit besonderen	UF4).	Modifikation der Werkstoffeigenschaften von Polystyrol durch Copolymeri-	rols, z.B. SAN.
Eigenschaften und deren	verwenden geeignete graphische Darstellun-	sation mit Acrylnitril.	Die Schülergruppen informie-
Synthesewege aus	gen bei der Erläuterung von Reaktionswegen	,	ren sich über die Synthesewe-
Basischemikalien z.B.:	und Reaktionsfolgen (K1, K3).	Flussdiagramme zur Veranschauli-	ge, die Struktur-Eigenschafts-
		chung von Reaktionswegen	Beziehungen und die Verwen-
• SAN:	demonstrieren an ausgewählten Beispielen		dung weiterer Kunststoffe und
Styrol- Acrylnitril-	mit geeigneten Schemata den Aufbau und die	Arbeitsteilige Projektarbeit zu wei-	präsentieren ihre Ergebnisse.
Coplymerisate	Funktion "maßgeschneiderter" Moleküle	teren ausgewählten Kunststoffen,	7
0 1 1 4	(K3).	z.B.: Superabsorber, Cyclodextrine.	Zur arbeitsteiligen Gruppenar- beit können auch kleine S-
 Cyclodextrine 		S-Präsentationen z.B. in Form von	Experimente durchgeführt
 Superabsorber 		Postern mit Museumsgang.	werden.
Superabsorber		T Cotom him indocantegang.	wordon.
Kunststoffmüll ist wert-	erläutern und bewerten den Einsatz von Erdöl	Schüler-Experiment:	Fächerübergreifender As-
voll:	und nachwachsenden Rohstoffen für die Her-	Herstellung von Stärkefolien	pekt:
Kunststoffverwertung	stellung von Produkten des Alltags und der	1.0.0.0	Plastikmüll verschmutzt die
 stoffliche Verwertung 	Technik (B3).		Meere (Biologie: Ökologie).
 rohstoffliche V. 		Podiumsdiskussion: z.B. zum The-	
 energetische V. 	diskutieren Wege zur Herstellung ausgewähl-	ma "Einsatz von Plastikgeschirr Ein-	Einsatz von Filmen zur Visua-
-	ter Alltagsprodukte (u.a. Kunststoffe) bzw.	weggeschirr auf öffentlichen Veran-	lisierung der Verwertungspro-
Ökonomische und ökolo-	industrieller Zwischenprodukte aus ökonomi-	staltungen!"	zesse.
gische Aspekte zum Ein-	scher und ökologischer Perspektive (B1, B2,		
satz von Einweggeschirr	B3).		
aus Polymilchsäure, Po-	beurteilen Nutzen und Risiken ausgewählter		
lystyrol oder Belland- Material.	Produkte der organischen Chemie unter vor-		
material.	gegebenen Fragestellungen (B4).		
Diagnose von Schülerkonz			

Diagnose von Schülerkonzepten:

- Schriftliche Überprüfung zum Eingang, Präsentationen
- Leistungsbewertung:
 - Präsentationen (Referate, Poster, Podiumsdiskussion), schriftliche Übung, Anteil an Gruppenarbeiten
 - •

Beispielhafte Hinweise zu weiterführenden Informationen:

Allgemeine Informationen und Schulexperimente: http://www.seilnacht.com

www.chemieunterricht.de/dc2/plaste/

Experimentiervorschrift zum Einbetten von kleinen Gegenständen in Polystyrol:

http://www.educ.ethz.ch/unt/um/che/boc/polystyrol/index

Internetauftritt des Verbands der Kunststofferzeuger mit umfangreichem Material für Schulen. Neben Filmen und Animationen finden sich auch Unterrichtseinheiten zum Download:

http://www.plasticseurope.de/Document/animation-vom-rohol-zum-kunststoff.aspx

Informationen zur Herstellung von PET-Flaschen:

http://www.forum-pet.de

Umfangreiche Umterrichtsreihe zum Thema Kunststoffe mit Materialien zum Belland-Material:

http://www.chik.die-sinis.de/Unterrichtsreihen_12/B__Organik/Belland.pdf

Film zum Kunststoffrecycling und Informationen zum grünen Punkt:

http://www.gruener-punkt.de/corporate/presse/videothek.html

Q2 Grundkurs - Unterrichtsvorhaben III

Kontext: Bunte Kleidung

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft

Basiskonzept Energie

Schwerpunkte übergeordneter Kompetenzerwartungen:

Die Schülerinnen und Schüler können

Kompetenzbereich Umgang mit Fachwissen:

- Phänomene und Sachverhalte im Zusammenhang mit Theorien, übergeordneten Prinzipien und Gesetzen der Chemie beschreiben und erläutern (UF1).
- chemische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren (UF3).

Kompetenzbereich Erkenntnisgewinnung:

- Modelle entwickeln sowie mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen chemische Prozesse erklären oder vorhersagen (E6).
- bedeutende naturwissenschaftliche Prinzipien reflektieren sowie Veränderungen in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen (E7).

Kompetenzbereich Kommunikation:

• chemische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren (K3).

Kompetenzbereich Bewertung:

• begründet die Möglichkeiten und Grenzen chemischer und anwendungsbezogener Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten (B4).

Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe

Inhaltliche Schwerpunkte:

♦ Farbstoffe und Farbigkeit

Zeitbedarf: ca. 20 Std. à 45 Minuten

Q2 Grundkurs - Unterrichtsvorhaben III

Kontext: Bunte Kleidu	Kontext: Bunte Kleidung			
Inhaltsfeld: Organische	Inhaltsfeld: Organische Produkte – Werkstoffe und Farbstoffe			
Inhaltliche Schwerpunkte:		Schwerpunkte übergeordneter Kompe	etenzerwartungen:	
_	ngen und Reaktionswege	 UF1 Wiedergabe 		
 Farbstoffe und Farbig 	keit	 UF3 Systematisierung 		
		E6 Modelle		
		 E7 Arbeits- und Denkweisen 		
		K3 Präsentation		
		B4 Möglichkeiten und Grenzen		
Zeitbedarf: 20 Std. à 45 Minu	uten	Basiskonzept (Schwerpunkt):		
		Basiskonzept Struktur – Eigenschaft,		
		Basisikonzept Energie		
Sequenzierung inhaltli-	Konkretisierte Kompetenzerwartun-	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen	
cher Aspekte	gen des Kernlehrplans		Didaktisch-methodische	
			Anmerkungen	
	Die Schülerinnen und Schüler			
Farbige Textilien		Bilder: Textilfarben – gestern und		
- Farbigkeit und Licht		heute im Vergleich		
- Absorptionsspek-		Franksituses Light and Fash a Fash		
trum - Farbe und Struktur	erläutern Zusammenhänge zwischen	Erarbeitung: Licht und Farbe, Fach-		
- Faibe und Struktur	Lichtabsorption und Farbigkeit fach- sprachlich angemessen (K3).	begriffe		
	spracificit angemessen (No).	Experiment: Fotometrie und Absorpti-		
		onsspektren		
	werten Absorptionsspektren fotometri-			
	scher Messungen aus und interpretieren	Arbeitsblatt: Molekülstrukturen von		
	die Ergebnisse (E5)	farbigen organischen Stoffen im Ver-		
		gleich		

Der Benzolring - Struktur des Benzols - Benzol als aromatisches System - Reaktionen des Benzols - Elektrophile Substitution	beschreiben die Struktur und Bindungsverhältnisse aromatischer Verbindungen mithilfe mesomerer Grenzstrukturen und erläutern Grenzen dieser Modellvorstellungen (E6, E7). erklären die elektrophile Erstsubstitution am Benzol und deren Bedeutung als Beleg für das Vorliegen eines aromatischen Systems (UF1, UF3).	Film: Das Traummolekül - August Kekulé und der Benzolring (FWU) Molekülbaukasten: Ermittlung möglicher Strukturen für Dibrombenzol Info: Röntgenstruktur Erarbeitung: elektrophile Substitution am Benzol Arbeitsblatt: Vergleich der elektrophilen Substitution mit der elektrophilen Addition Trainingsblatt: Reaktionsschritte	Gelegenheit zur Wiederholung der Reaktionsschritte aus Q1
Vom Benzol zum	erklären die Farbigkeit von vorgegebe-	Lehrerinfo: Farbigkeit durch Substi-	
Azofarbstoff - Farbige Derivate	nen Stoffen (u.a. Azofarbstoffe) durch Lichtabsorption und erläutern den Zu-	tuenten	
des Benzols - Konjugierte Doppel- bindungen	sammenhang zwischen Farbigkeit und Molekülstruktur mithilfe des Mesome- riemodells (mesomere Grenzstrukturen,	Einfluss von Donator-/ Akzeptorgrup- pen, konjugierten Doppelbindungen	
Donator-/ Akzep- torgruppenMesomerie	Delokalisation von Elektronen, Donator-/ Akzeptorgruppen) (UF1, E6).	Erarbeitung: Struktur der Azofarbstoffe	
- Azogruppe	erklären vergleichend die Struktur und deren Einfluss auf die Farbigkeit ausge- wählter organischer Farbstoffe (u.a. Azofarbstoffe) (E6).	Arbeitsblatt: Zuordnung von Struktur und Farbe verschiedener Azofarbstoffe	
Welche Farbe für welchen		Lehrerinfo: Textilfasern	Rückgriff auf die Kunststoff-
Stoff? - ausgewählte Textil-	erklären Stoffeigenschaften mit zwi- schenmolekularen Wechselwirkungen	Arbeitsteilige Gruppenarbeit:	chemie (z.B. Polyester)
fasern - bedeutsame Textil- farbstoffe - Wechselwirkung	(u.a. Van-der-Waals-Kräfte, Dipol-Dipol-Kräfte, Wasserstoffbrücken) (UF3, UF4). beurteilen Nutzen und Risiken ausge-	Färben von Textilien, u.a. mit Indigo, einem Azofarbstoff	Möglichkeiten zur Wiederho- lung und Vertiefung: - pH-Wert und der Ein- fluss auf die Farbe

zwischen Faser und Farbstoff - Vor- und Nachteile bei Herstellung und Anwendung	` '		 zwischenmolekulare Wechselwirkungen Herstellung und Verar- beitung von Kunststof- fen 	
<u>Diagnose von Schülerkonzepten:</u> • Trainingsblatt zu Reaktionsschritten				

Trainingsblatt zu Reaktionsschritten

Leistungsbewertung:

• Klausur, Präsentation der Gruppenergebnisse

Beispielhafte Hinweise zu weiterführenden Informationen:

Zahlreiche Informationen zu Farbe und Farbstoffen sind z.B. im folgenden Lexikon zusammengestellt:

http://www.seilnacht.com/Lexikon/FLexikon.htm

Auch zu aktuelleren Entwicklungen findet man Material: http://www.max-wissen.de/Fachwissen/show/0/Heft/funktionelle+Farben.html